Curve Fitting Toolbox

For Use with MATLAB®

Computation
Visualization

Programming

User’s Guide <4\The MathWorks

Version 1

LN

How to Contact The MathWorks

www . mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.
Curve Fitting Toolbox User’s Guide
© COPYRIGHT 2001-2006 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined

in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox
are registered trademarks, and SimBiology, SimEvents, and SimHydraulics are trademarks of
The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History

July 2001 First printing
July 2002 Second printing
June 2004 Online only
October 2004 Online only
March 2005 Online only
June 2005 Third printing
September 2005 Online only
March 2006 Online only

September 2006 Online only

New for Version 1 (Release 12.1)

Revised for Version 1.1 (Release 13)
Revised for Version 1.1.1 (Release 14)
Revised for Version 1.1.2 (Release 14SP1)
Revised for Version 1.1.3 (Release 14SP2)
Minor revision for Version 1.1.3

Revised for Version 1.1.4 (Release 14SP3)
Revised for Version 1.1.5 (Release 2006a)
Revised for Version 1.1.6 (Release 2006b)

Getting Started

What Is the Curve Fitting Toolbox? 1-2
Major Featuresciiiiiiiiiiiiiiiiinnnnn 1-2
Interactive and Programmatic Environments 1-2

Interactive Curve Fitting 14
Opening the Curve Fitting Tool 14
ImportingtheData 1-5
Interactive Fitting i i 1-7
Analyzingthe Fit 1-18
Saving Your Work i, 1-20

Programmatic Curve Fitting 1-23
Curve Fitting Objects and Methods 1-23
Interactive Code Generation 1-26

Interactive Curve Fitting

2

Importing, Viewing, and Preprocessing Data 2-2
ImportingData i 2-2
ViewingDatac. ... 2-6
SmoothingData i, 2-9
Excluding and Sectioning Data 2-26
Additional Preprocessing Stepsciiii... 2-40
Selected Bibliography 2-43

FittingData 2-44
The Fitting Process 2-44
ParametricFitting i i i, 2-46
Nonparametric Fitting 2-116
Selected Bibliography 2-124

vi

Contents

Programmatic Curve Fitting

3

Curve Fitting Objects and Methods 3-3
OVeIVIEW o ittt ettt et et e e e 3-3
Curve Fitting Objectsciiiiiio... 3-4
Curve Fitting Methods, 3-5
Workflow for Object-Oriented Fitting 3-7
Examplesccoiiiiiiiii it e e 3-9

Interactive Code Generation 3-24
OVeIVIEW & ittt ettt et et e 3-24
The Generated M-file 3-25
Running the Generated M-file 3-27
Understanding the Components of the Generated

M-File ..ot e e e e 3-29
Modifyingthe Code00, 3-32

Functions — By Category

q |

PreprocessingData 4-2
FittingData 0 i, 4-2
Curve FitMethods 4-2
FitTypeMethods 4-3
Postprocessing Fits 4-4
InformationandHelp 4-5

Functions — Alphabetical List

5

Index

vii

viii Contents

Getting Started

This chapter briefly introduces the major features of the Curve Fitting Toolbox
with a single example. The example fits census data with several models,
finds the best fit, and extrapolates the fit to predict future population. The
data modeling process is explored interactively, using the Curve Fitting Tool,
and then programmatically, using curve fitting objects and methods.

What Is the Curve Fitting Toolbox? Introduction to the Curve Fitting
(p. 1-2) Toolbox
Interactive Curve Fitting (p. 1-4) Using the Curve Fitting Tool

Programmatic Curve Fitting (p. 1-23) Using curve fitting objects and
methods

1 Getting Started

What Is the Curve Fitting Toolbox?

Major Features (p. 1-2) What can you do with the Curve
Fitting Toolbox?

Interactive and Programmatic The two sides of the Curve Fitting

Environments (p. 1-2) Toolbox

Maijor Features

The Curve Fitting Toolbox is a collection of graphical user interfaces (GUIs)
and M-file functions that operate in the MATLAB technical computing
environment. The toolbox supplements MATLAB with these main features:

Data preprocessing capabilities, such as sectioning, excluding data, and
smoothing

Data fitting using parametric and nonparametric models:

= The toolbox includes a library of parametric models, with polynomials,
exponentials, rationals, sums of Gaussians, Fourier polynomials, and
many others

= You can also define custom models to precisely reflect the goals of your
data analysis

= Nonparametric models are available through a variety of smoothers
and interpolants

Fitting methods for linear least squares, nonlinear least squares, weighted
least squares, constrained least squares, and robust fitting are available

Data and fit statistics to assist you in analyzing your models

Postprocessing capabilities that allow you to interpolate, extrapolate,
differentiate, and integrate the fit

The ability to save your work in various formats, including workspace
variables, binary files, and automatically generated MATLAB code

Interactive and Programmatic Environments
The Curve Fitting Toolbox allows you to work in two different environments:

What Is the Curve Fitting Toolbox?2

® An interactive environment, the Curve Fitting Tool, which is composed of
multiple graphical user interfaces

® A programmatic environment that allows you to write object-oriented
MATLAB code using curve fitting methods

To open the Curve Fitting Tool, type

cftool

To list the functions in the Curve Fitting Toolbox for use in MATLAB
programming, type

help curvefit
The code for any function can be opened in the MATLAB Editor by typing

edit function_name
Brief, command line help for any function is available by typing
help function_name

Complete documentation for any function is available by typing

doc function_name

You can change the way any toolbox function works by copying and renaming
its M-file, examining your copy in the editor, and then modifying it.

You can also extend the toolbox by adding your own M-files, or by using your
code in combination with functions from other toolboxes, such as the Statistics
Toolbox or the Optimization Toolbox.

http://www.mathworks.com/products/statistics/
http://www.mathworks.com/products/optimization/

1 Getting Started

Interactive Curve Fitting

14

Opening the Curve Fitting Tool
(p. 1-4)

Importing the Data (p. 1-5)
Interactive Fitting (p. 1-7)
Analyzing the Fit (p. 1-18)
Saving Your Work (p. 1-20)

Opening the main interface

Using MATLAB data
Computing and visualizing fits
Postprocessing options

Saving and exporting a fitting
session

Opening the Curve Fitting Tool

The Curve Fitting Tool is a graphical user interface (GUI) that allows you to

® Visually explore one or more data sets and fits as scatter plots.

® Graphically evaluate the goodness of fit using residuals and prediction

bounds.

® Access additional interfaces for

cftool

Importing, viewing, and smoothing data

Fitting data, and comparing fits and data sets

Marking data points to be excluded from a fit

Selecting which fits and data sets are displayed in the tool

Interpolating, extrapolating, differentiating, or integrating fits

You open the Curve Fitting Tool with the cftool command.

Interactive Curve Fitting

< Curve Fitting Tool

File ‘Wiew Tools ‘Window Help

IS [=1E3

a|aa | Hk

Data...

Fitting...

Excluds..

Platting...

Anatysis...

0.9

08+

07k

06F

0.5

0.4+

03F

02+

01k

Select "Data” to begin curve fitting

02

0.3

0.4

0.8

0.8

o7

0.8

0.9

Importing the Data

Before you can import data into the Curve Fitting Tool, the data variables
must exist in the MATLAB workspace. For this example, the data is stored in
the file census.mat, which is provided with MATLAB.

load census

The workspace now contains two new variables, cdate and pop:

® cdate is a column vector containing the years 1790 to 1990 in 10-year

increments.

® pop is a column vector with the US population figures that correspond
to the years in cdate.

You can import data into the Curve Fitting Tool with the Data GUI. You open
this GUI by clicking the Data button on the Curve Fitting Tool. As shown
below, the Data GUI consists of two panes: Data sets and Smooth. The Data

Sets pane allows you to

1 Getting Started

® Import predictor (X) data, response (Y) data, and weights. If you do not
import weights, then they are assumed to be 1 for all data points.

¢ Specify the name of the data set.

® Preview the data.

To load cdate and pop into the Curve Fitting Tool, select the appropriate
variable names from the X Data and Y Data lists. The data is then displayed

in the Preview window. Click the Create data set button to complete the
data import process.

-o] x|
Data Sets | Smggthl
Import workspace vectars: Preview
*
Seled the data KData |cdate | .
variable names. ¥ Data: pop - .
Weights: {none) - +
*
Data set name: |p0p vg. cdate P
(lick Create dotaset Sroato date cat L
. reate data se |
to import the data. .
*
*
Data sets:
PP
B Eenarme | elete |
Close | Help |

The Smooth pane is described in “Importing, Viewing, and Preprocessing

Data” on page 2-2.

Interactive Curve Fitting

Interactive Fitting

You fit data with the Fitting GUI. You open this GUI by clicking the Fitting
button on the Curve Fitting Tool. The Fitting GUI consists of two parts: the
Fit Editor and the Table of Fits. The Fit Editor allows you to

® Specify the fit name, the current data set, and the exclusion rule.

® Explore various fits to the current data set using a library or custom
equation, a smoothing spline, or an interpolant.

® Override the default fit options such as the coefficient starting values.
® Compare fit results including the fitted coefficients and goodness of fit
statistics.

The Table of Fits allows you to

® Keep track of all the fits and their data sets for the current session.
* Display a summary of the fit results.

e Save or delete the fit results.

The Data Fitting Procedure

For this example, begin by fitting the census data with a second degree
polynomial. Then continue fitting the data using polynomial equations up to
sixth degree, and a single-term exponential equation.

The data fitting procedure follows these general steps:

1 From the Fit Editor, click New Fit.

Note that this action always defaults to a linear polynomial fit type. You
use New Fit at the beginning of your curve fitting session, and when you
are exploring different fit types for a given data set.

2 Because the initial fit uses a second degree polynomial, select quadratic
polynomial from the Polynomial list. Name the fit poly2.

3 Click the Apply button or select the Immediate apply check box. The
library model, fitted coefficients, and goodness of fit statistics are displayed
in the Results area.

1 Getting Started

4 Fit the additional library equations.

For fits of a given type (for example, polynomials), you should use Copy Fit
instead of New Fit because copying a fit retains the current fit type state
thereby requiring fewer steps than creating a new fit each time.

Interactive Curve Fitting

The Fitting GUI is shown below with the results of fitting the census data
with a quadratic polynomial.

Fit Editor

e fit | Copy fit |

Fit Mame: IponE
Data set: Ipop vs, cdate 'l Exclusion rule: I(none) 'l
Type of fit: IPolynomiaI 'l [Center and scale ¥ data

=10l x|

Folynamial

linear palynomial

cubic polynamial
4th degree polynamial

| v

-

Fit optians... | '

Results

Immediate apply cancel | Apply |

Linear model Poly2:

Goodness of fit:
S5E: 159
R-square: 0.9957
Adjusted B-square:
RM3E: Z.972

£ix) = pl*x*2 + pa*x + p3
Coefficients (with 95% confidence bounds):
pl = 0.006541 (0.006124, 0.006958)
pz = -23.51 (-25.08, -21.93)
p3 = 2.113e+004 (l.964e+004, Z.262e+004)

-

09936 |

Table of Fits

Falynomia

Delete fit I Save to workspace... | Tahle options... |

Close | Help |

The Fit Editor allows you toselect a data
set and a fit name, and fo explore and
compare various library and custom fits.

The Table of Fits allows you to keep
track of all the fits, their data sets,
and fit resulis for the current session.

1-9

1 Getting Started

1-10

The data, fit, and residuals are shown below. You display the residuals as a
line plot by selecting the menu item View > Residuals > Line plot from

the Curve Fitting Tool.

<) Curve Fitting Tool
File “iew Tools WWindow Help

I [=] S

& | [

Data... I Fitting... Exclude... Platting.. I

Analysis... I

Cata and Fits

250

200+

180+

100+

S0+

+ popws. cdate

poly2

H I L ! L L L
1800 4820 1840 1860 1880 1900 15920

Residuals

! L L
1o 1860 1980

e &b A B o M oAE o

—— poly2

L ! L L
1800 1820 1840 1860 1880 1900 1920

L L
1840 1860 1980

These residuals indicate that
a better fit may be possible.

The residuals indicate that a better fit may be possible. Therefore, you
should continue fitting the census data following the procedure outlined in

the beginning of this section.

The residuals from a good fit should look random with no apparent pattern. A
pattern, such as a tendency for consecutive residuals to have the same sign,
can be an indication that a better model exists.

When you fit higher degree polynomials, the Results area displays this

warning:

Equation is badly conditioned. Remove repeated data points

Interactive Curve Fitting

or try centering and scaling.

The warning arises because the fitting procedure uses the cdate values as
the basis for a matrix with very large values. The spread of the cdate values
results in scaling problems. To address this problem, you can normalize the
cdate data. Normalization is a process of scaling the predictor data to improve
the accuracy of the subsequent numeric computations. A way to normalize
cdate is to center it at zero mean and scale it to unit standard deviation.

(cdate - mean(cdate))./std(cdate)

To normalize data with the Curve Fitting Tool, select the Center and scale
X data check box.

Note Because the predictor data changes after normalizing, the values of the
fitted coefficients also change when compared to the original data. However,
the functional form of the data and the resulting goodness of fit statistics

do not change. Additionally, the data is displayed in the Curve Fitting Tool
using the original scale.

Determining the Best Fit

To determine the best fit, you should examine both the graphical and
numerical fit results.

Examining the Graphical Fit Results. Your initial approach in determining
the best fit should be a graphical examination of the fits and residuals. The
graphical fit results shown below indicate that

® The fits and residuals for the polynomial equations are all similar, making
it difficult to choose the best one.

¢ The fit and residuals for the single-term exponential equation indicate it is
a poor fit overall. Therefore, it is a poor choice for extrapolation.

1-11

Getting Started

1-12

). Curve Fitting Tool

File “iew Tools Window Help

EXRIET
Diata... | Fittirg... | Exclude... | Plottitg... | Analysis... |
Data and Fits
T T T T T
280 - /
200
150 -
100 -

1800 1820

1820

Residuals

I
1900

I I
1840 1960 1980

20 |

1800 1820

L
1820

15900

1540 1960 1580

Use the Plotting GUI to remove exp1 from the scatter plot display.

PR J=1F

Flaot data sets Plat fits

Data set Fit Data set

vl | pop vs. cdate vl | poly2 pop ws. cdate

v | paly3 pap ws. coate

[v! | polyd pop ws. cdate

vl | polys pop ws. cdate

v | palye pap ws. coate

| expi pop ws. cdate

[Clear associated fits when clearing data sets!

Close I Help |

Remove this fit from
the scatter plot.

Interactive Curve Fitting

Because the goal of fitting the census data is to extrapolate the best fit to
predict future population values, you should explore the behavior of the fits
up to the year 2050. You can change the axes limits of the Curve Fitting Tool

by selecting the menu item Tools > Axes Limit Control.

The census data and fits are shown below for an upper abscissa limit of 2050.
The behavior of the sixth degree polynomial fit beyond the data range makes

it a poor choice for extrapolation.

<) Curve Fitting Tool
File “iew Tools WWindow Help

& | [

Data... I Fitting... Exclude... Platting.. I Analysis... I

Cata and Fits

250

+ popws. cdate

)| poly2

180+ -
100+ -
O -

0 i | | . | | | . | I
1800 4820 4840 1860 1880 1900 4920 1840 1860 1980

Residuals

—— poly2

e &b A B o M oAE o

L L L ! L L L ! L L
1800 1820 4240 1860 1880 4900 4920 1%d0 1860 1980

These residuals indicate that
a better fit may be possible.

As you can see, you should exercise caution when extrapolating with
polynomial fits because they can diverge wildly outside the data range.

1-13

1 Getting Started

1-14

Examining the Numerical Fit Results. Because you can no longer
eliminate fits by examining them graphically, you should examine the
numerical fit results. There are two types of numerical fit results displayed
in the Fitting GUI: goodness of fit statistics and confidence intervals on the
fitted coefficients. The goodness of fit statistics help you determine how well
the curve fits the data. The confidence intervals on the coefficients determine
their accuracy.

Some goodness of fit statistics are displayed in the Results area of the Fit
Editor for a single fit. All goodness of fit statistics are displayed in the Table
of Fits for all fits, which allows for easy comparison.

In this example, the sum of squares due to error (SSE) and the adjusted
R-square statistics are used to help determine the best fit. As described

in “Goodness-of-Fit Statistics” on page 2-74, the SSE statistic is the least
squares error of the fit, with a value closer to zero indicating a better fit. The
adjusted R-square statistic is generally the best indicator of the fit quality
when you add additional coefficients to your model.

You can modify the information displayed in the Table of Fits with the Table
Options GUI. You open this GUI by clicking the Table options button on
the Fitting GUI. As shown below, select the adjusted R-square statistic and
clear the R-square statistic.

4. Table Options

Check to view column in Table of Fits:

¥ Harme " DFE

V¥ Data set v i Display the adjusted R-square stafistic in the Table of Fits.
¥ Type I~ RMSE

Iv ssE [# Coeft

[R-zquare Do not display the R-square stafistic in the Table of Fits.

- |

The numerical fit results are shown below. You can click the Table of Fits
column headings to sort by statistics results.

Interactive Curve Fitting

The SSE for exp1 indicates it is a poor fit, which was already determined by
examining the fit and residuals. The lowest SSE value is associated with
poly6. However, the behavior of this fit beyond the data range makes it a poor
choice for extrapolation. The next best SSE value is associated with the fifth
degree polynomial fit, poly5, suggesting it may be the best fit. However, the
SSE and adjusted R-square values for the remaining polynomial fits are all
very close to each other. Which one should you choose?

Fit Editor

Mew fit | Copy fit |

Data set:

Fit Mame: |p0|y5

|p0p vs, cdate

=

Type of fit: |POIyn0mia|

=

-lojx|

Exclusion rule: |{none) -

v Center and scale ¥ data

Falynomial

cubic palynamial
4th degree palynamial

ath degree polynomial
Bth degree palynamial

Results

Fit options... |

[Immediate apply Cancel | Al |

Linear model Poly5: =
£ix) = pl*x*5 + p2*x*4 + p3I*x*3 4+ pd*xt2 + pSi*tx + po
where ® iz normalized by mean 1590 and std 62.05
Coefficients (with 95% confidence bounds):

-

The confidence bounds for the p1-p3

pl = 0.5877 (-2.305, 3.48) »)
o2 - 07047 (1564, 3054 | _coeﬁxle!'ltsswge‘sﬂhuluflf‘lhdegree
B3 = -0.9193 (-10.19, 8.356) po|ynomm| overfits the census data.
pd = 23.47 (17.42, 29.52)
ps = 74.97 (68.37, 81.57)
b = 62.23 (59.51, 64.95) =

Table of Fits I Click this column heading to sort

Name Data set Type 55E Ad] R-s0 the fits by the SSE values.
poly6 popvs. cdate |Polynomial 106.92758 0.99876 - .
po e |Polynorial 14416615 The SSE and adjusted R-square

polyd popvs. cdate |Polynomial 145 968592 0.99852 | h H
values suggest that the Titth degree
poly3 popvs. cdate |Polvnomial 14976872 [0.99857 l:gg . 9
poly2 popvs.cdate |Polynomial | [159.0283 [0.88857 || polynomial fit is the best one.
expl npopvs. cdate |Exponential 6384 66126 [0.94135 L=
Delete fit Save to workspace... | Tahle options... |

Close |

1-15

1 Getting Started

1-16

To resolve this issue, examine the confidence bounds for the remaining fits.
By default, 95% confidence bounds are calculated. You can change this level
by selecting the menu item View > Confidence Level from the Curve
Fitting Tool.

The p1, p2, and p3 coefficients for the fifth degree polynomial suggest that it
overfits the census data. However, the confidence bounds for the quadratic
fit, poly2, indicate that the fitted coefficients are known fairly accurately.
Therefore, after examining both the graphical and numerical fit results, it
appears that you should use poly2 to extrapolate the census data.

Note The fitted coefficients associated with the constant, linear, and
quadratic terms are nearly identical for each polynomial equation. However,
as the polynomial degree increases, the coefficient bounds associated with the
higher degree terms increase, which suggests overfitting.

For more information about confidence bounds, refer to “Confidence and
Prediction Bounds” on page 2-77.

Saving the Fit Results

By clicking the Save to workspace button, you can save the selected fit and
the associated fit results to the MATLAB workspace. The fit is saved as a
MATLAB object and the associated fit results are saved as structures. This
example saves all the fit results for the best fit, poly2.

+). Save Fit to MATLAB Workspace e x|

[v Save fit to MATLAB ohject named: I;medmudeh
v Save goodness of fit to MATLAB struct named: Igandness1
Iv Save fit output to MATLAB struct named: Inutpuﬂ

QK I Cancel |

fittedmodel1 is saved as a Curve Fitting Toolbox cfit object.

whos fittedmodel1

Interactive Curve Fitting

Name
fittedmodel1

Size
1x1

Class
cfit object

Bytes
6178

Grand total is 386 elements using 6178 bytes

The cfit object display includes the model, the fitted coefficients, and the
confidence bounds for the fitted coefficients.

fittedmodel1

fittedmodell =

Linear model Poly2:
fittedmodell (x) = p1*x°2 + p2*x + p3
Coefficients (with 95% confidence bounds):

pt =
p2 =

p3 = 2.

0.006541
-23.51
113e+004

(0.006124, 0.006958)
(-25.09,
(1.964e+004, 2.262e+004)

-21.93)

The goodness1 structure contains goodness of fit results.

goodness1

goodness1 =

sse:
rsquare:
dfe:
adjrsquare:
rmse:

The output1 structure contains additional information associated with the fit.

outputi

outputtl =
numobs:
numparam:
residuals:
Jacobian:
exitflag:
algorithm:

159.0293
0.9987
18
0.9986
2.9724

21
3
[21x1 double]
[21x3 double]
1

'"QR factorization and solve'

1-17

1 Getting Started

Analyzing the Fit

You can evaluate (interpolate or extrapolate), differentiate, or integrate a fit
over a specified data range with the Analysis GUI. You open this GUI by
clicking the Analysis button on the Curve Fitting Tool.

For this example, you will extrapolate the quadratic polynomial fit to predict
the US population from the year 2000 to the year 2050 in 10 year increments,
and then plot both the analysis results and the data. To do this:

Enter the appropriate MATLAB vector in the Analyze at Xi field.
Select the Evaluate fit at Xi check box.

Select the Plot results and Plot data set check boxes.

Click the Apply button.

The numerical extrapolation results are shown below.

<} Analysis =0l x|

Specif'y the fit and { Fitto analyze: |polv2 (pop vs. ... 'l Hi T

_FBannananen (2000 274,622
. Analyze atxi=[2000:10:2050

data fo analyze iz i e
.) 2020 330.334
Se|edl|1|sc|1ec|(II))(— v Evaluatefit atxi 2030 60,152
to extrapolate. Prediction bounds: 2040 391.279
= Mane 2050 423.714

= Forfunction

© For new observation

Level | 95 %

[15t derivative at i
[2nd derivative at xi

[Integrate to Xi
& Start from ming<i

© Start fram I
Plot both the analysis { [Plot resdits

results and the data. [Plot data set: pop vs. cdate

Save to workspace... | Apply | Close |

The extrapolated values and the census data set are displayed together in
a new figure window.

1-18

Interactive Curve Fitting

-} Curve Fitting Analysis ;Iglll

File Edit ‘iew Insert Tools ‘window Help

[Dema rxars, 222

Analysis of fit "poly2" for dataset "pop vs. cdate”
450 T T T T

—— paly2

200 - % popve. cdate

350 - B

300 - B

280 + s i

Fit

200 - # B

180 - % i

100 - * B

50t i .

b
%
§ % * 1

D 1 1 Il
1780 1800 1840 1900 1950 2000 2080

Saving the Analysis Results

By clicking the Save to workspace button, you can save the extrapolated
values as a structure to the MATLAB workspace.

+) Save Analysis Results to Workspace x|

Save analysis results to MATLAB struct named:Enalysisresultm
ke I Cancel |

The resulting structure is shown below.

analysisresults1
analysisresultst =

xi: [6x1 double]
yfit: [6x1 double]

1-19

1 Getting Started

1-20

Saving Your Work

The Curve Fitting Toolbox provides you with several options for saving your
work. You can save one or more fits and the associated fit results as variables
to the MATLAB workspace. You can then use this saved information for
documentation purposes, or to extend your data exploration and analysis. In
addition to saving your work to MATLAB workspace variables, you can

® “Save the Session” on page 1-20

® “Generate an M-File” on page 1-21

Before performing any of these tasks, you may want to remove unwanted data
sets and fits from the Curve Fitting Tool display. An easy way to do this is

with the Plotting GUI. The Plotting GUI shown below is configured to display
only the census data and the best fit, poly2.

<} Plotting oy [=] 1
Flot data sets Plat fits
Data set Fit Data set

¥ |pop vs. cdate [+ |poh2 popvs. cdate
[polya pop vs. cdate Clear the remaining fits
[|polyd pop vs. cdate “ .
Floons e cdate associated with the census
[|palye pop vs. cdate data except the best fit.
[|expi popvs. coate

[Clear associated fits when clearing data sets.

o |

Save the Session

The curve fitting session is defined as the current collection of fits for all
data sets. You may want to save your session so that you can continue data
exploration and analysis at a later time using the Curve Fitting Tool without
losing any current work.

Save the current curve fitting session by selecting the menu item File->Save
Session from the Curve Fitting Tool. The Save Session dialog is shown
below.

Interactive Curve Fitting

Save Session HE
Save jh: I i3 CFSessionFiles ﬂ gl
DecayRate. cfit
poly1fit.cfit
poly2it cfit
poly i, it
reaction]. cfit
reachion?. cfit
File marme: Icensus \ﬂl
Save as type: |"_cfit j Cancel |

The session is stored in binary form in a cfit file, and contains this
information:

e All data sets and associated fits

® The state of the Fitting GUI, including Table of Fits entries and exclusion
rules

¢ The state of the Plotting GUI

To avoid saving unwanted data sets, you should delete them from the Curve
Fitting Tool. You delete data sets using the Data Sets pane of the Data GUI. If
there are fits associated with the unwanted data sets, they are deleted as well.

You can load a saved session by selecting the menu item File > Load Session
from the Curve Fitting Tool. When the session is loaded, the saved state of
the Curve Fitting Tool display is reproduced, and may display the data, fits,
residuals, and so on. If you open the Fitting GUI, then the loaded fits are
displayed in the Table of Fits. Select a fit from this table to continue your
curve fitting session.

Generate an M-File

You may want to generate an M-file that captures your work, so that you can
continue your analysis outside of the Curve Fitting Tool. The M-file can be
used without modification, or it can be edited as needed.

1-21

1 Getting Started

1-22

To generate an M-file from a session in the Curve Fitting Tool, select the
menu item File > Generate M-file.

The M-file captures the following information from the Curve Fitting Tool:

e Names of variables, fits, and residuals

¢ Fit options, such as whether the data should be normalized, initial values
for the coefficients, and the fitting method

e Curve fitting objects and methods used to create the fit

You can recreate your Curve Fitting Tool session by calling the M-file from
the command line with your original data as input arguments. You can also
call the M-file with new data, and automate the process of fitting multiple
data sets.

For more information on working with a generated M-file, see “Interactive
Code Generation” on page 1-26.

Programmatic Curve Fitting

Programmatic Curve Fitting

Curve Fitting Objects and Methods Curve fitting outside of the Curve

(p. 1-23) Fitting Tool
Interactive Code Generation (p. 1-26) Using code from the Curve Fitting
Tool

Curve Fitting Objects and Methods

The Curve Fitting Tool is a graphical user interface that allows convenient,
interactive use of the functions in the Curve Fitting Toolbox, without
programming. You can, however, access the functions in the Curve Fitting
Toolbox directly, and write programs that combine curve fitting functions with
functions from MATLAB and other toolboxes. This allows you to create a
curve fitting environment that is precisely suited to your needs.

Models and fits in the Curve Fitting Tool are managed internally as curve
fitting objects. Objects are manipulated through a variety of functions called
methods. You can create curve fitting objects, and apply curve fitting methods,
outside of the Curve Fitting Tool.

For example, the following code, using methods from the Curve Fitting
Toolbox, reproduces an analysis of the census data that was carried out
interactively in the Curve Fitting Tool in “Interactive Curve Fitting” on page
1-4.

Load and plot the data in census.mat:
load census

plot(cdate,pop,'0o"')
hold on

1-23

1 Getting Started

250 . T T T

200 © -

150+ o 4

100 -

0 OQOOO 1 1 1
1750 1800 1850 1900 1950 2000

Create a fit options structure and a fittype object for the custom nonlinear
model y = a(x-b)", where a and b are coefficients and n is a problem-dependent

parameter:

s = fitoptions('Method', 'NonlinearLeastSquares',...
"Lower',[0,0],...
"Upper',[Inf,max(cdate)],...
'Startpoint',[1 1]);

f = fittype('a*(x-b)"n', 'problem','n','options',s);

Fit the data using the fit options and a value of n = 2:

[c2,g0f2] = fit(cdate,pop,f, ' 'problem',2)

c2 =
General model:
c2(x) = a*(x-b)"n
Coefficients (with 95% confidence bounds):
a = 0.006092 (0.005743, 0.006441)
b = 1789 (1784, 1793)
Problem parameters:
n = 2
gof2 =

sse: 246.1543

1-24

Programmatic Curve Fitting

rsquare: 0.9980

dfe: 19
adjrsquare: 0.9979
rmse: 3.5994

Fit the data using the fit options and a value of n = 3:

[c3,g0f3] = fit(cdate,pop,f, ' 'problem',3)
c3 =
General model:
c3(x) = a*(x-b)"n
Coefficients (with 95% confidence bounds):
a = 1.359e-005 (1.245e-005, 1.474e-005)

b = 1725 (1718, 1731)
Problem parameters:
n = 3

gof3 =
sse: 232.0058
rsquare: 0.9981
dfe: 19
adjrsquare: 0.9980
rmse: 3.4944

Plot the fit results with the data:

plot(c2,'m")
plot(c3,'c')

1-25

1 Getting Started

1-26

300 : . r .
fitted curve
fitted curve

250

200

= 150}

100+

a0 Kol -

.-..
L nM’/

0 1 1 1
1750 1800 1850 1800 1850 2000

Interactive Code Generation

Curve fitting code can be assembled into an M-file by hand, as shown in
“Curve Fitting Objects and Methods” on page 1-23, or it can be generated
automatically from an interactive session in the Curve Fitting Tool, as
described in “Generate an M-File” on page 1-21. In practice, automatically
generated code, giving the broad outlines of an analysis, can be combined
with hand-coded refinements. This allows you to write functions that are
customized to your data and your analysis, without having to write all of
the basic programming structures.

For example, the following M-file was generated from a session in the Curve
Fitting Tool that imported the data from census.mat and fit a custom
nonlinear model of the form y = a(x—b)%:

function myfit(cdate,pop)

SMYFIT Create plot of datasets and fits

MYFIT (CDATE,POP)

Creates a plot, similar to the plot in the main curve fitting
window, using the data that you provide as input. You can
apply this function to the same data you used with cftool

o® o° o°

o°

Programmatic Curve Fitting

o°

or with different data. You may want to edit the function t
customize the code and this help message.

o® o°

o°

Number of datasets: 1
Number of fits: 1

o°

o°

Data from dataset "census":

% X = cdate:
% Y = pop:
% Unweighted

o°

o°

o°

Set up figure to receive datasets and fits

_ = clf;

figure(f_);

set(f_,'Units','Pixels','Position',[183.6 68.1 814.4 571.8]);
legh_ = [1; legt_ = {}; % handles and text for legend
xlim_ = [Inf -Inf]; % limits of x axis

ax_ = axes;

set(ax_, 'Units', 'normalized', 'OuterPosition',[0 O 1 1]);
set(ax_, 'Box','on'");

axes(ax_); hold on;

-

% --- Plot data originally in dataset "census"
cdate = cdate(:);
pop = pop(:);

This function was automatically generated on 22-Jul-2006 10:09:

(o]

39

h_ = line(cdate,pop, 'Parent',ax_, 'Color',[0.333333 0 0.666667],...

'LineStyle', 'none', 'LineWidth',1,...
'‘Marker',"'.', 'MarkerSize',12);
xlim_(1) = min(x1lim_(1),min(cdate));
xlim_(2) = max(xlim_(2),max(cdate));
legh_(end+1) = h_;
legt {end+1} = 'census';

% Nudge axis limits beyond data limits
if all(isfinite(x1lim_))
xlim_ = xlim_ + [-1 1] * 0.01 * diff(xlim_);

1-27

1 Getting Started

set(ax_, 'XLim',x1lim_)

end

% --- Create fit "censusfit"

fo_ = fitoptions('method', 'NonlinearLeastSquares','Lower',[0 O]);
ok_ = ~(isnan(cdate) | isnan(pop));

st_ = [111];

set(fo_, 'Startpoint',st_);

ft_ = fittype('a*(x-b)"3',...
"dependent',{'y'}, 'independent',{'x'},...
‘coefficients',{'a', 'b'});

% Fit this model using new data
cf_ = fit(cdate(ok_),pop(ok_),ft ,fo);

% Or use coefficients from the original fit:

if 0
cv_ = {1.359437793879e-005, 1724.696932124};
cf_ = cfit(ft_,cv_{:});

end

% Plot this fit
h_ = plot(cf_,'fit',0.95);
legend off; % turn off legend from plot method call
set(h_(1),'Color',[1 0 O],...
'LineStyle','-"', 'LineWidth',2,...
'Marker', 'none', 'MarkerSize',6);
legh _(end+1) = h_(1);
legt {end+1} = 'censusfit';

% Done plotting data and fits. Now finish up loose ends.
hold off;

h_ = legend(ax_,legh_,legt ,'Location', 'NorthEast');
set(h_, 'Interpreter', 'none');

xlabel(ax_,"'"'); % remove x label
ylabel(ax_,"'"); % remove y label

1-28

Programmatic Curve Fitting

A quick look through the code shows that it has automatically assembled for
you many of the curve fitting methods from the Curve Fitting Toolbox, such as
fitoptions, fittype, fit, and plot.

A natural modification of the M-file would be to edit the function declaration
at the top of the file to return the cfit object created by the fit, as follows:

function cf_ = myfit(cdate,pop)

You might also modify the code to produce a variety of different plots, or to
return goodness-of-fit statistics.

Coding with curve fitting objects and methods is given complete treatment in
Chapter 3, “Programmatic Curve Fitting”.

1-29

1 Getting Started

1-30

Interactive Curve Fitting

Importing, Viewing, and Preparing data for a fit
Preprocessing Data (p. 2-2)

Fitting Data (p. 2-44) Parametric and nonparametric
fitting methods

2 Interactive Curve Fitting

2-2

Importing, Viewing, and Preprocessing Data

This section describes how to import, view, and preprocess data with the

Curve Fitting Toolbox.

Importing Data (p. 2-2)

Viewing Data (p. 2-6)
Smoothing Data (p. 2-9)

Excluding and Sectioning Data
(p. 2-26)

Additional Preprocessing Steps
(p. 2-40)

Selected Bibliography (p. 2-43)

Importing Data

Import workspace variables, list
imported and generated data sets,
delete data

Visualize data
Data filtering and preprocessing

Designate outliers, excluded data
from a fit

Data transformations, working with
NaNs and Infs

References

You import data sets into the Curve Fitting Tool with the Data Sets pane of
the Data GUI. Using this pane, you can

® Select workspace variables that compose a data set

¢ Display a list of all imported data sets

® View, delete, or rename one or more data sets

The Data Sets pane is shown below followed by a description of its features.

Importing, Viewing, and Preprocessing Data

[Data Sefs | smoon|

Import workspace vectors:

H Data: (hone)
Y Data:

Weights:

Comstruct and {none)

name the data set. ™|

-

(hone)

Data setname: I

Data gets

Data sets list —]

=0l x|

Preview

Select® and Y vectors of equal length,
or a single ¥ vectar.

Cloge | Help |

Construct and Name the Data Se

t

Import workspace vectors — All selected variables must be the same

length. You can import only vectors, not matrices or scalars. Infs and NaNs

are ignored because you cannot fit dat

a containing these values, and only

the real part of a complex number is used. To perform any curve-fitting
task, you must select at least one vector of data:

= X data — Select the predictor data.

= Y data — Select the response data.

= Weights — Select the weights associated with the response data. If
weights are not imported, they are assumed to be 1 for all data points.

Preview — The selected workspace vectors are displayed graphically in

the preview window. Weights are not displayed.

Data set name — The name of the imported data set. The toolbox

automatically creates a unique name for each imported data set. You can

change the name by editing this field.
complete the data import process.

Click the Create data set button to

2 Interactive Curve Fitting

Data Sets List

* Data sets — Lists all data sets added to the Curve Fitting Tool. The
data sets can be created from workspace variables, or from smoothing an
existing imported data set. When you select a data set, you can perform
these actions:

= Click View to open the View Data Set GUI. Using this GUI, you can view
a single data set both graphically and numerically. Additionally, you can
display data points to be excluded in a fit by selecting an exclusion rule.

= Click Rename to change the name of a single data set.

= Click Delete to delete one or more data sets. To select multiple data sets,
you can use the Ctrl key and the mouse to select data sets one by one, or
you can use the Shift key and the mouse to select a range of data sets.

Example: Importing Data

This example imports the ENSO data set into the Curve Fitting Toolbox using
the Data Sets pane of the Data GUI. The first step is to load the data from the
file enso.mat into the MATLAB workspace.

load enso
The workspace contains two new variables, pressure and month:
® pressure is the monthly averaged atmospheric pressure differences

between Easter Island and Darwin, Australia. This difference drives the
trade winds in the southern hemisphere.

® month is the relative time in months.

Alternatively, you can import data by specifying the variable names as
arguments to the cftool function.

cftool(month,pressure)
In this case, the Data GUI is not opened.
Data Import Process. The data import process is described below:

1 Select workspace variables.

Importing, Viewing, and Preprocessing Data

The predictor and response data are displayed graphically in the Preview
window. Weights and data points containing Infs or NaNs are not displayed.

2 Specify the data set name.

You should specify a meaningful name when you import multiple data sets.
If you do not specify a name, the default name, which is constructed from
the selected variable names, is used.

3 Click the Create data set button.

The Data sets list box displays all the data sets added to the toolbox. Note
that you can construct data sets from workspace variables, or by smoothing
an existing data set.

If your data contains Infs or complex values, a warning message such as
the message shown below is displayed.

! ! lgnoring Infs in data and using only the real component of complex data

After you click the Create data set window.

The Data Sets pane shown below displays the imported ENSO data in the
Preview button, the data set enso is added to the Data sets list box. You can
then view, rename, or delete enso by selecting it in the list box and clicking
the appropriate button.

2 Interactive Curve Fitting

Data Sets | Smggthl

=10l

Importwarkspace vectars: [Presiesy
Select the workspace ¥ Data: manth ~
. +*
variable names. ¥ Data: [pressure <] * e P
" * . g
Weights: {none) - LI te Fo. g
A RS R I "
* L ad
. I'Ed p 8 “"‘;0’ 0.”’ e ¥
Specity the dafa set name. Diata sethame: |enso Ve ML v T
* + .
LU o w
Click Crente dotu set to Create data set | et Lee
. *
import the data. ot oy
+*
Data sets: 4 * *
MWW %
census
e Eenarme | Uelete |
Close | Help |

Viewing Data

The Curve Fitting Toolbox provides two ways to view imported data:

® Graphically in a scatter plot

¢ Numerically in a table

Viewing Data Graphically

After you import a data set, it is automatically displayed as a scatter plot in
the Curve Fitting Tool. The response data is plotted on the vertical axis and
the predictor data is plotted on the horizontal axis.

The scatter plot is a powerful tool because it allows you to view the entire data
set at once, and it can easily display a wide range of relationships between the
two variables. You should examine the data carefully to determine whether
preprocessing is required, or to deduce a reasonable fitting approach. For
example, it’s typically very easy to identify outliers in a scatter plot, and to

Importing, Viewing, and Preprocessing Data

determine whether you should fit the data with a straight line, a periodic
function, a sum of Gaussians, and so on.

Enhancing the Graphical Display. The Curve Fitting Toolbox provides
several tools for enhancing the graphical display of a data set. These tools are
available through the Tools menu, the GUI toolbar, and right-click menus.

You can zoom in or out, turn on or off the grid, and so on using the Tools
menu and the GUI toolbar shown below.

Custom Equation = R L I = I
¥ | egend
ricd

Zoom In Tools 6UI Toolbar

Zoorm Ot Henu
Pan
Axiz Limit Cortral

Default Axis Limits

You can change the color, line width, line style, and marker type of the
displayed data points using the right-click menu shown below. You activate
this menu by placing your mouse over a data point and right-clicking. Note
that a similar menu is available for fitted curves.

Color. ..

Line ‘width . .
lnestde » | Right-click menu
Marker *

2 Interactive Curve Fitting

The ENSO data is shown below after the display has been enhanced using
several of these tools.

) Uiarvez Fallirsy T ooul

W Lipner Limt
(. - . T
: : : [enseH Display the legend for
i : ; the ENSO data set.
sl ——
. | ‘3’3:‘“‘;:;9“;. y Display data fips using
t6f---—fs ' { 1 ﬂ\ﬂ 3 ilvl MATLAB's click functionality.
& f + - -)
'“f!” ﬂm a Jtl‘ﬂ|. 'g\ IL f lﬁ]! 1 }{\& — Change the color, marker
g L J ik ‘F: I ﬂ] i k a7 %i J type and line style for the data.
g4 A
J ’ V\ Display the grid.
k- L e
X
lﬁg‘ S0 5 nomeE e ﬁg_— Change the axis limits.

Viewing Data Numerically

You can view the numerical values of a data set, as well as data points to
be excluded from subsequent fits, with the View Data Set GUI. You open
this GUI by selecting a name in the Data sets list box of the Data GUI and
clicking the View button.

Importing, Viewing, and Preprocessing Data

The View Data Set GUI for the ENSO data set is shown below, followed by
a description of its features.

[-) viewbataset =10l x|
Data set: enso Tl 3 YWeights
¥ manth 1 1 128 -
X pressure 2 2 11.3
Weights: (none) 3 3 10.6
S 4 4 11.2
* + E a a 104
+ M .+t
4 * e Iy 4] 4] 78
S P *,s’ ST 7 77
+ *
oo el L b e 8 17
SR T 5 3 12.9
ot at e W
L AP 10 10 143
* - *
AP % % 11 11 104
+ .t 12 12 137
* 13 13 174
% 14 14 14
Exclusion rules: 15 15 15.3
16 16 84
|(n0ne) ;I 17 17 =T ;I
Close |

e Data set — Lists the names of the viewed data set and the associated
variables. The data is displayed graphically below this list.

The index, predictor data (X), response data (Y), and weights (if imported)
are displayed numerically in the table. If the data contains Infs or NaNs,
those values are labeled “ignored.” If the data contains complex numbers,
only the real part is displayed.

¢ Exclusion rules — Lists all the exclusion rules that are compatible with
the viewed data set. When you select an exclusion rule, the data points
marked for exclusion are grayed in the table, and are identified with an
“x” in the graphical display. To exclude the data points while fitting, you
must create the exclusion rule in the Exclude GUI and select the exclusion
rule in the Fitting GUL

An exclusion rule is compatible with the viewed data set if their lengths
are the same, or if it is created by sectioning only.

Smoothing Data

If your data is noisy, you might need to apply a smoothing algorithm to expose
its features, and to provide a reasonable starting approach for parametric
fitting. The two basic assumptions that underlie smoothing are

2 Interactive Curve Fitting

2-10

¢ The relationship between the response data and the predictor data is
smooth.

® The smoothing process results in a smoothed value that is a better estimate
of the original value because the noise has been reduced.

The smoothing process attempts to estimate the average of the distribution
of each response value. The estimation is based on a specified number of
neighboring response values.

You can think of smoothing as a local fit because a new response value is
created for each original response value. Therefore, smoothing is similar

to some of the nonparametric fit types supported by the toolbox, such as
smoothing spline and cubic interpolation. However, this type of fitting is not
the same as parametric fitting, which results in a global parameterization
of the data.

Note You should not fit data with a parametric model after smoothing,
because the act of smoothing invalidates the assumption that the errors are
normally distributed. Instead, you should consider smoothing to be a data
exploration technique.

There are two common types of smoothing methods: filtering (averaging) and
local regression. Each smoothing method requires a span. The span defines
a window of neighboring points to include in the smoothing calculation for
each data point. This window moves across the data set as the smoothed
response value is calculated for each predictor value. A large span increases
the smoothness but decreases the resolution of the smoothed data set, while
a small span decreases the smoothness but increases the resolution of the
smoothed data set. The optimal span value depends on your data set and the
smoothing method, and usually requires some experimentation to find.

The Curve Fitting Toolbox supports these smoothing methods:

® Moving average filtering — Lowpass filter that takes the average of
neighboring data points.

® Lowess and loess — Locally weighted scatter plot smooth. These methods
use linear least squares fitting, and a first-degree polynomial (lowess) or a

Importing, Viewing, and Preprocessing Data

second-degree polynomial (loess). Robust lowess and loess methods that
are resistant to outliers are also available.

o Savitzky-Golay filtering — A generalized moving average where you derive
the filter coefficients by performing an unweighted linear least squares fit
using a polynomial of the specified degree.

Note that you can also smooth data using a smoothing spline. Refer to
“Nonparametric Fitting” on page 2-116 for more information.

You smooth data with the Smooth pane of the Data GUI. The pane is shown
below followed by a description of its features.

=10l x|

Diata Sets Smoath |

QOriginal data set: E2hs0 -
Data sets =
Smoothed data et |enso {=moath)

N [~ Method: Maoving Average LI
Smoothing method _
rI‘.I —— Span: 5
and paramefers DemeE:

. Create smoothed data set |

[~ Smoothed data sets:
enso {smoath)

Data sefs list
= Fenarme | Deleta | Savetoworkspace. .. |
Close | Help |
Data Sets

® Original data set — Select the data set you want to smooth.

2-11

2 Interactive Curve Fitting

* Smoothed data set — Specify the name of the smoothed data set. Note
that the process of smoothing the original data set always produces a new
data set containing smoothed response values.

Smoothing Method and Parameters

¢ Method — Select the smoothing method. Each response value is replaced
with a smoothed value that is calculated by the specified smoothing method.

Moving average — Filter the data by calculating an average.

Lowess — Locally weighted scatter plot smooth using linear least
squares fitting and a first-degree polynomial.

Loess — Locally weighted scatter plot smooth using linear least squares
fitting and a second-degree polynomial.

= Savitzky-Golay — Filter the data with an unweighted linear least
squares fit using a polynomial of the specified degree.

= Robust Lowess — Lowess method that is resistant to outliers.
= Robust Loess — Loess method that is resistant to outliers.
¢ Span — The number of data points used to compute each smoothed value.

For the moving average and Savitzky-Golay methods, the span must be
odd. For all locally weighted smoothing methods, if the span is less than 1,
it is interpreted as the percentage of the total number of data points.

* Degree — The degree of the polynomial used in the Savitzky-Golay
method. The degree must be smaller than the span.

Data Sets List

* Smoothed data sets — Lists all the smoothed data sets. You add a
smoothed data set to the list by clicking the Create smoothed data set
button. When you select a data set from the list, you can perform these
actions:

= Click View to open the View Data Set GUI. Using this GUI, you can view
a single data set both graphically and numerically. Additionally, you can
display data points to be excluded in a fit by selecting an exclusion rule.

2-12

Importing, Viewing, and Preprocessing Data

= Click Rename to change the name of a single data set.

= Click Delete to delete one or more data sets. To select multiple data sets,
you can use the Ctrl key and the mouse to select data sets one by one, or
you can use the Shift key and the mouse to select a range of data sets.

= Click Save to workspace to save a single data set to a structure.

Moving Average Filtering

A moving average filter smooths data by replacing each data point with the
average of the neighboring data points defined within the span. This process
is equivalent to lowpass filtering with the response of the smoothing given by
the difference equation

yli) = ENI 1(}(!+N}+J(E+N D+...+y(i-N))

where y (i) is the smoothed value for the ith data point, N is the number of
neighboring data points on either side of y (i), and 2N+1 is the span.

The moving average smoothing method used by the Curve Fitting Toolbox
follows these rules:

¢ The span must be odd.

The data point to be smoothed must be at the center of the span.

¢ The span is adjusted for data points that cannot accommodate the specified
number of neighbors on either side.

The end points are not smoothed because a span cannot be defined.

Note that you can use filter function to implement difference equations such
as the one shown above. However, because of the way that the end points are
treated, the toolbox moving average result will differ from the result returned
by filter. Refer to Difference Equations and Filtering in the MATLAB
documentation for more information.

For example, suppose you smooth data using a moving average filter with a
span of 5. Using the rules described above, the first four elements of y_ are
given by

2-13

2 Interactive Curve Fitting

2-14

Ys(1) = y(1)

Ys(2) = (y(1)+y(2)+y(3))/3

Ys(3) = (y(1)+y(2)+y(3)+y(4)+y(5))/5
Ys(4) = (y(2)+y(3)+y(4)+y(5)+y(6))/5

Note that y_ (1), y,(2), ... ,y,(end) refer to the order of the data after sorting,
and not necessarily the original order.

The smoothed values and spans for the first four data points of a generated
data set are shown below.

Moving Average Smoothing

B0 80 T I
= Data - = Data "
. Smoothed value ¥ Smoothed value
GO * 1 G0 *
40r 1 40
L] L]
- L] - L]
20t . " 1 20 . "
-] L]
- L] S .
0 0
0 2 4 B B 0 2 4 B B
(a) (b
B0 T T B0 I I
« Data - « Data -
*_ Smoothed value . Smoothed value
BO[" 1 B0 "
L] L] L] L]
L] L]
40F 1 40
* L] * L]
20t " 20 . "
0]
0 2 4 B B 0 2 4 B B
ic) (d)

Plot (a) indicates that the first data point is not smoothed because a span
cannot be constructed. Plot (b) indicates that the second data point is
smoothed using a span of three. Plots (c) and (d) indicate that a span of five
is used to calculate the smoothed value.

Importing, Viewing, and Preprocessing Data

Lowess and Loess: Local Regression Smoothing

The names “lowess” and “loess” are derived from the term “locally weighted
scatter plot smooth,” as both methods use locally weighted linear regression
to smooth data.

The smoothing process is considered local because, like the moving average
method, each smoothed value is determined by neighboring data points
defined within the span. The process is weighted because a regression weight
function is defined for the data points contained within the span. In addition
to the regression weight function, you can use a robust weight function, which
makes the process resistant to outliers. Finally, the methods are differentiated
by the model used in the regression: lowess uses a linear polynomial, while
loess uses a quadratic polynomial.

The local regression smoothing methods used by the Curve Fitting Toolbox
follow these rules:

¢ The span can be even or odd.

® You can specify the span as a percentage of the total number of data points
in the data set. For example, a span of 0.1 uses 10% of the data points.

The regression smoothing and robust smoothing procedures are described in
detail below.

Local Regression Smoothing Procedure. The local regression smoothing
process follows these steps for each data point:

1 Compute the regression weights for each data point in the span. The
weights are given by the tricube function shown below.

o

X _Ii

d(x)

w.=[1_

L

x is the predictor value associated with the response value to be smoothed,
x; are the nearest neighbors of x as defined by the span, and d(x) is the
distance along the abscissa from x to the most distant predictor value
within the span. The weights have these characteristics:

2-15

2 Interactive Curve Fitting

® The data point to be smoothed has the largest weight and the most
influence on the fit.

¢ Data points outside the span have zero weight and no influence on the fit.

2 A weighted linear least squares regression is performed. For lowess, the
regression uses a first degree polynomial. For loess, the regression uses a
second degree polynomial.

3 The smoothed value is given by the weighted regression at the predictor
value of interest.

If the smooth calculation involves the same number of neighboring data points
on either side of the smoothed data point, the weight function is symmetric.
However, if the number of neighboring points is not symmetric about the
smoothed data point, then the weight function is not symmetric. Note that
unlike the moving average smoothing process, the span never changes. For
example, when you smooth the data point with the smallest predictor value,
the shape of the weight function is truncated by one half, the leftmost data
point in the span has the largest weight, and all the neighboring points are
to the right of the smoothed value.

2-16

Importing, Viewing, and Preprocessing Data

The weight function for an end point and for an interior point is shown below
for a span of 31 data points.

Local Regression Weight Function

1.2k -
ne i
08| The weight function for -
a6k the leftmost dufo point 4
04F .
02 -
0 t;l 2‘0 -“rICI EICI KI] 1!‘]0
1.2k -
s N
08| The weight function for .
06k on interior doto point i
04F e
az2r T
0 (;l ZICI 4I0 BIO Eé:l ‘HI:ICI

Using the lowess method with a span of five, the smoothed values and
associated regressions for the first four data points of a generated data set
are shown below.

2-17

2 Interactive Curve Fitting

2-18

&0 I T I &0 I T I
= Data = Data
 Smoothed value ®x Smoaothed value
60 60
401 40
2[] i L] | | ' 20 L] L] '
| b |
0 0
2 4 0 2 4
(a) (b}
B0 I I =1l T I
= Data = Data
#. Smoothed value # Smoothed value
60 60
40 40
20¢ . - 20 /X,-/ -
k—:"‘é’:ﬂ [] »
0 L 0 .
2 4 0 2 4
(c) (d)

Lowess Smocthing

Notice that the span does not change as the smoothing process progresses
from data point to data point. However, depending on the number of nearest
neighbors, the regression weight function might not be symmetric about the
data point to be smoothed. In particular, plots (a) and (b) use an asymmetric
weight function, while plots (¢) and (d) use a symmetric weight function.

For the loess method, the graphs would look the same except the smoothed
value would be generated by a second-degree polynomial.

Importing, Viewing, and Preprocessing Data

Robust Smoothing Procedure. If your data contains outliers, the smoothed
values can become distorted, and not reflect the behavior of the bulk of the
neighboring data points. To overcome this problem, you can smooth the data
using a robust procedure that is not influenced by a small fraction of outliers.
For a description of outliers, refer to “Marking Outliers” on page 2-28.

The Curve Fitting Toolbox provides a robust version for both the lowess
and loess smoothing methods. These robust methods include an additional
calculation of robust weights, which is resistant to outliers. The robust
smoothing procedure follows these steps:

1 Calculate the residuals from the smoothing procedure described in the
previous section.

2 Compute the robust weights for each data point in the span. The weights
are given by the bisquare function shown below.
g 2
[(1 ~(r,/6MAD)")" |r)| <6MAD
wl- = I 1
0 |r;| = 6MAD

r; is the residual of the ith data point produced by the regression smoothing
procedure, and MAD is the median absolute deviation of the residuals:

MAD = median(|r])

The median absolute deviation is a measure of how spread out the residuals
are. If r, is small compared to 6MAD, then the robust weight is close to 1.
If r, is greater than 6MAD, the robust weight is 0 and the associated data
point is excluded from the smooth calculation.

3 Smooth the data again using the robust weights. The final smoothed value
is calculated using both the local regression weight and the robust weight.

4 Repeat the previous two steps for a total of five iterations.

The smoothing results of the lowess procedure are compared below to the
results of the robust lowess procedure for a generated data set that contains a
single outlier. The span for both procedures is 11 data points.

2-19

2 Interactive Curve Fitting

2-20

Robust Lowess Smoothing

10 T T T T T I
= data
x
x L] ¥ lowess
%x
5 >.< b4 [—
W K %
* SRS TS P TS S S
- -

D | | | | | |
0 1 2 3 4 5 &

(a)

5 T T 'L T T

-5 | | | | | |

0 1 2 3 4 5 g
(b)

10 T T T T T |

- » data
x % [l * robust lowess
k4
5 .V -

a X 'y ¥ . n - -

AR w g R M AT Z xR

0 1 1 1 1 1 1
i 1 2 3 4 5 i

()

Plot (a) shows that the outlier influences the smoothed value for several
nearest neighbors. Plot (b) suggests that the residual of the outlier is greater
than six median absolute deviations. Therefore, the robust weight is zero for
this data point. Plot (c¢) shows that the smoothed values neighboring the
outlier reflect the bulk of the data.

Savitzky-Golay Filtering

Savitzky-Golay filtering can be thought of as a generalized moving average.
You derive the filter coefficients by performing an unweighted linear

least squares fit using a polynomial of a given degree. For this reason, a
Savitzky-Golay filter is also called a digital smoothing polynomial filter or a
least squares smoothing filter. Note that a higher degree polynomial makes
it possible to achieve a high level of smoothing without attenuation of data
features.

Importing, Viewing, and Preprocessing Data

The Savitzky-Golay filtering method is often used with frequency data or
with spectroscopic (peak) data. For frequency data, the method is effective
at preserving the high-frequency components of the signal. For spectroscopic
data, the method is effective at preserving higher moments of the peak such
as the line width. By comparison, the moving average filter tends to filter
out a significant portion of the signal’s high-frequency content, and it can
only preserve the lower moments of a peak such as the centroid. However,
Savitzky-Golay filtering can be less successful than a moving average filter
at rejecting noise.

The Savitzky-Golay smoothing method used by the Curve Fitting Toolbox
follows these rules:

® The span must be odd.
® The polynomial degree must be less than the span.

® The data points are not required to have uniform spacing.

Normally, Savitzky-Golay filtering requires uniform spacing of the predictor
data. However, the algorithm provided by the Curve Fitting Toolbox
supports nonuniform spacing. Therefore, you are not required to perform
an additional filtering step to create data with uniform spacing.

The plot shown below displays generated Gaussian data and several attempts
at smoothing using the Savitzky-Golay method. The data is very noisy and
the peak widths vary from broad to narrow. The span is equal to 5% of the
number of data points.

2-21

2 Interactive Curve Fitting

Savitzky—Golay Smoothing

B0 T T T T T

- data
— 5S-G quadratic []

I
-- data
— S-Gquartic [

60

40
20

(€}

Plot (a) shows the noisy data. To more easily compare the smoothed results,
plots (b) and (c) show the data without the added noise.

Plot (b) shows the result of smoothing with a quadratic polynomial. Notice
that the method performs poorly for the narrow peaks. Plot (¢) shows the
result of smoothing with a quartic polynomial. In general, higher degree
polynomials can more accurately capture the heights and widths of narrow
peaks, but can do poorly at smoothing wider peaks.

Example: Smoothing Data

This example smooths the ENSO data set using the moving average, lowess,
loess, and Savitzky-Golay methods with the default span. As shown below, the
data appears noisy. Smoothing might help you visualize patterns in the data,
and provide insight toward a reasonable approach for parametric fitting.

2-22

Importing, Viewing, and Preprocessing Data

7 Curve Fitting Tool =[O x|
File ‘iew Toolz Window Help
S| & & ([
Naw 1| Fiting. | Exclude Poting | Analsis |
Jar : . —
. '
. +
16 . ., * i
- . .
. P . J
e e, .t) . - .
Y .-+ . s
- + hd - *
2, . e 7 LI * 1
. ‘
K tas .o' - ., * + -
1ol . T S - Because the data appears
B LR noisy, smoothing might help
. . « -
| R e g uncover ifs structure.
d ey . +
* - +
.
* * +
G . . . |
. + * * .’
41 . . - |
.
A
oL |
ol 4
0 20 40 s 80 100 120 140 1&0

2-23

2 Interactive Curve Fitting

2-24

The Smooth pane shown below displays all the new data sets generated by
smoothing the original ENSO data set. Whenever you smooth a data set,
a new data set of smoothed values is created. The smoothed data sets are
automatically displayed in the Curve Fitting Tool. You can also display a
single data set graphically and numerically by clicking the View button.

< Datn [-Iol=]
utn Sotn et |

Anew dato set omposed of smoothed T = =

values is created from the original data set. -

All smoothed data sets are listed here.

Click the View button to display

the selected data set. e Vew || e | D | wvetoweriapecn |
<) View Data Set o]
(et S e Index X v [wewhis | e | e |
¥ month h 1 hoa B
Origingl ¥ pressure 2 2 Me
Weights: (none) o 3 [11.38
n n 03
Methodt: Moving Aversge 5 . s
Span: 5 3 & 98
Degres; 7 7 1014 | . .
1 s 10 — The View Data Set GUI dlsrluys the
5 B 2 s selected data set graphically and numerically.
oL
) : 3,§§ '0;, m " 13.78
3: u“’.’oo. . ,“.0 12 12 4
;,:9’:,3,.. LS E 13 142
PO ol 4 14 1372
M P4 +
e o & . ns s 1212
* + had e e 9.8
¥ M 7 17 852
N e 18 X0
d {E 13 D
20 20 72
21 21 B.76 _I
Clase

Importing, Viewing, and Preprocessing Data

Use the Plotting GUI to display only the data sets of interest. As shown
below, the periodic structure of the ENSO data set becomes apparent when
it is smoothed using a moving average filter with the default span. Not
surprisingly, the uncovered structure is periodic, which suggests that a
reasonable parametric model should include trigonometric functions.

=) Platting (0] =]
ot dats sets Pt 1t
l_I [[Im [oeasm
i i (MA) MAY
D[s,:luy only the data set created I oron it 1T T
with the moving average method. T o Rowesny
™ erieo (Loss)
I leran 50y
I Clear nasociated i when cinoring dnin sets
i
Fie \iew Tools Window Hep _]"“’

& aad Em

Daa. | Fmeg. | Denda | pumeg. | mayse. |

: < enso MA)
— enso MA]

o 20 40 & B0 0 120 140 160

The smoothing process uncovers obvious
periodic structure in the data.

Refer to “Example: Custom Model (Fourier Series)” on page 2-99 for an
example that fits the ENSO data using a sum of sine and cosine functions.

2-25

2 Interactive Curve Fitting

2-26

Saving the Results. By clicking the Save to workspace button, you can
save a smoothed data set as a structure to the MATLAB workspace. This
example saves the moving average results contained in the enso (ma) data set.

+} Save Smoothed Data to Workspace x|

Sawve smoothed data to MATLAB struct named:lsmuntheddata1
[o]24 I Cancel |

The saved structure contains the original predictor data x and the smoothed
data y.

smootheddatai

smootheddatal =
x: [168x1 double]
y: [168x1 double]

Excluding and Sectioning Data

If there is justification, you might want to exclude part of a data set from

a fit. Typically, you exclude data so that subsequent fits are not adversely
affected. For example, if you are fitting a parametric model to measured
data that has been corrupted by a faulty sensor, the resulting fit coefficients
will be inaccurate.

The Curve Fitting Toolbox provides two methods to exclude data:

® Marking Outliers — Outliers are defined as individual data points that
you exclude because they are inconsistent with the statistical nature of
the bulk of the data.

® Sectioning — Sectioning excludes a window of response or predictor data.
For example, if many data points in a data set are corrupted by large
systematic errors, you might want to section them out of the fit.

For each of these methods, you must create an exclusion rule, which captures
the range, domain, or index of the data points to be excluded.

Importing, Viewing, and Preprocessing Data

To exclude data while fitting, you use the Fitting GUI to associate the
appropriate exclusion rule with the data set to be fit. Refer to “Example:
Robust Fitting” on page 2-109 for more information about fitting a data set
using an exclusion rule.

You mark data to be excluded from a fit with the Exclude GUI, which you
open from the Curve Fitting Tool. The GUI is shown below followed by a
description of its features.

) Exclude =10/ x]
Exclusion rule. —— Exclusion rule name: |ex03 Existing exlusion rules:
— Exclude Point: excl
exc2
Select data set Ienso VI Exclude graphically |
Exdudeindividuul Check to exclude paint:
.] Index X ¥
data points.
po 1 1 12.49 -
|2 2 11.3
|3 3 10.6 =
[~ -Exclude Section
Exclude t!uiu seclions | | &ugex = =] | @
by domain or range.
i Exclude Y [== - | Excludey [»= =] | Comy | pr— |
| Create exclusion rule I Eenarme | [elete |

Close | Help |

Exclusion Rule

¢ Exclusion rule name — Specify the name of the exclusion rule that
identifies the data points to be excluded from subsequent fits.

¢ Existing exclusion rules — Lists the names of all exclusion rules created
during the current session. When you select an existing exclusion rule, you
can perform these actions:

= Click Copy to copy the exclusion rule. The exclusions associated with
the original exclusion rule are recreated in the GUI. You can modify
these exclusions and then click Create exclusion rule to save them to
the copied rule.

= Click Rename to change the name of the exclusion rule.

2-27

2 Interactive Curve Fitting

2-28

= Click Delete to delete the exclusion rule. To select multiple exclusion
rules, you can use the Ctrl key and the mouse to select exclusion rules
one by one, or you can use the Shift key and the mouse to select a range
of exclusion rules.

= Click View to display the exclusion rule graphically. If a data set is
associated with the exclusion rule, the data is also displayed.

Exclude Individual Data Points

¢ Select data set — Select the data set from which data points will be
marked as excluded. You must select a data set to exclude individual
data points.

¢ Exclude graphically — Open a GUI that allows you to exclude individual
data points graphically.

Individually excluded data points are marked by an “x” in the GUI, and are
automatically identified in the Check to exclude point table.

¢ Check to exclude point — Select individual data points to exclude. You
can sort this table by clicking on any of the column headings.

Exclude Data Sections in the Domain or Range

® Section — Specify data to be excluded. You do not need to select a data set
to create an exclusion rule by sectioning.

= Exclude X — Specify beginning and ending intervals in the predictor
data to be excluded.

= Exclude Y — Specify beginning and ending intervals in the response
data to be excluded.

Marking Outliers

Outliers are defined as individual data points that you exclude from a fit
because they are inconsistent with the statistical nature of the bulk of the
data, and will adversely affect the fit results. Outliers are often readily
identified by a scatter plot of response data versus predictor data.

Marking outliers with the Curve Fitting Toolbox follows these rules:

Importing, Viewing, and Preprocessing Data

* You must specify a data set before creating an exclusion rule.

In general, you should use the exclusion rule only with the specific data set
it was based on. However, the toolbox does not prevent you from using the
exclusion rule with another data set provided the size is the same.

® Using the Exclude GUI, you can exclude outliers either graphically or
numerically.

As described in “Parametric Fitting” on page 2-46, one of the basic
assumptions underlying curve fitting is that the data is statistical in nature
and is described by a particular distribution, which is often assumed to be
Gaussian. The statistical nature of the data implies that it contains random
variations along with a deterministic component.

data = deterministic component + random component

However, your data set might contain one or more data points that are

nonstatistical in nature, or are described by a different statistical distribution.

These data points might be easy to identify, or they might be buried in the
data and difficult to identify.

A nonstatistical process can involve the measurement of a physical variable
such as temperature or voltage in which the random variation is negligible
compared to the systematic errors. For example, if your sensor calibration
is inaccurate, the data measured with that sensor will be systematically
inaccurate. In some cases, you might be able to quantify this nonstatistical
data component and correct the data accordingly. However, if the scatter plot
reveals that a handful of response values are far removed from neighboring
response values, these data points are considered outliers and should be
excluded from the fit. Outliers are usually difficult to explain away. For
example, it might be that your sensor experienced a power surge or someone
wrote down the wrong number in a log book.

If you decide there is justification, you should mark outliers to be excluded
from subsequent fits — particularly parametric fits. Removing these data
points can have a dramatic effect on the fit results because the fitting process
minimizes the square of the residuals. If you do not exclude outliers, the
resulting fit will be poor for a large portion of your data. Conversely, if you
do exclude the outliers and choose the appropriate model, the fit results
should be reasonable.

2-29

2 Interactive Curve Fitting

2-30

Because outliers can have a significant effect on a fit, they are considered
influential data. However, not all influential data points are outliers. For
example, your data set can contain valid data points that are far removed
from the rest of the data. The data is valid because it is well described by
the model used in the fit. The data is influential because its exclusion will
dramatically affect the fit results.

Two types of influential data points are shown below for generated data. Also
shown are cubic polynomial fits and a robust fit that is resistant to outliers.

Influential Data Points

150
100
- These outliers odversely
* uffect the fit.
50 1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 i} 7] 9 10
ia)
150 T T T T T T T T
« data
cubic fit
100 7
These dutn points are
tonsistent with the model.
50 1 1 1 | | | | | | |
1 2 3 4 5 [7 8 9 10
(b)
150 T T T T T T T T
= data
robust cubic fit
100 q
50 1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 & 7 a 9 10

Plot (a) shows that the two influential data points are outliers and adversely
affect the fit. Plot (b) shows that the two influential data points are consistent
with the model and do not adversely affect the fit. Plot (c) shows that a
robust fitting procedure is an acceptable alternative to marking outliers for
exclusion. Robust fitting is described in “Robust Least Squares” on page 2-55.

Importing, Viewing, and Preprocessing Data

Sectioning

Sectioning involves specifying response or predictor data to exclude. You
might want to section a data set because different parts of the data set are
described by different models or are corrupted by noise, large systematic
errors, and so on.

Sectioning data with the Curve Fitting Toolbox follows these rules:
¢ If you are only sectioning data and not excluding individual data points,

then you can create an exclusion rule without specifying a data set name.

® You can associate an exclusion rule with any data set provided that the
exclusion rule overlaps with the data. This is useful if you have multiple
data sets from which you want to exclude data points using the same rule.

e Use the Exclude GUI to create the exclusion rule.

® You can exclude vertical strips at the edges of the data, horizontal strips
at the edges of the data, or a border around the data. Refer to “Example:
Excluding and Sectioning Data” on page 2-33 for an example.

¢ To exclude multiple sections of data, you can use the excludedata function
from the MATLAB command line.

2-31

2 Interactive Curve Fitting

Two examples of sectioning by domain are shown below for generated data.

Sectioning Data

18 T T : T L—— T T T T
This setion it with o 16 : e
lineor polynomical .| %Q:;ﬁ ‘,Emﬁ:,.\:\)
14f 2= o B 1
I o] : [ae
Thissetion fitwith 0 12 /—‘*q?m X 4
tubic polynomicol -—1;_ e Yol |
o Data : k'ou(o
gf | = = =Linear fit| : -} Q.“:,—
Cubic fit |
6 T T 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20
Dato corrupted by noise
18 T T T T pl T T T “ T
18 - 5 & .
o R eetRga, : o
s B e .
14F : ! : 27
_GOW : Py
12 : wig 2o 47
i ¢
101 e .
@ Data : e
Bl |= = =Linearfit| ° : =
Cubicfit| :
6 T T N 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20

The upper shows the data set sectioned by fit type. The section to the left of 4
is fit with a linear polynomial, as shown by the bold, dashed line. The section
to the right of 4 is fit with a cubic polynomial, as shown by the bold, solid line.

The lower plot shows the data set sectioned by fit type and by valid data.
Here, the rightmost section is not part of any fit because the data is corrupted
by noise.

Note For illustrative purposes, the preceding figures have been enhanced to
show portions of the curves with bold markers. The Curve Fitting Toolbox
does not use bold markers in plots.

2-32

Importing, Viewing, and Preprocessing Data

Example: Excluding and Sectioning Data

This example modifies the ENSO data set to illustrate excluding and
sectioning data. First, copy the ENSO response data to a new variable and
add two outliers that are far removed from the bulk of the data.

rand('state',0)

yy = pressure;

yy(ceil(length(month)*rand(1))) = mean(pressure)*2.5;
yy(ceil(length(month)*rand(1))) mean(pressure)*3.0;

Import the variables month and yy as the new data set enso1, and open the
Exclude GUL

Assume that the first and last eight months of the data set are unreliable, and
should be excluded from subsequent fits. The simplest way to exclude these
data points is to section the predictor data. To do this, specify the data you
want to exclude in the Exclude Sections field of the Exclude GUI.

Exclude X |<: VI IS Exclude X |>: 'I |161
Exclude v |<= 'I I Exclude Y |>= 'l I

Exclude Sections

There are two ways to exclude individual data points: using the Check to
exclude point table or graphically. For this example, the simplest way to
exclude the outliers is graphically. To do this, select the data set name and
click the Exclude graphically button, which opens the Select Points for
Exclusion Rule GUIL

Select the dafa set.

Exclude Points

Open the GUI fo exclude

Select data sat. [enso | Exclude graphically data points graphically.
Check to exclude point:
Index H by
|1 1 128 -
]z 2 11.3
|3 3 10.6 =l

2-33

2 Interactive Curve Fitting

To mark data points for exclusion in the GUI, place the mouse cursor over
the data point and left-click. The excluded data point is marked with a red

x. To include an excluded data point, right-click the data point or select the
Includes Them radio button and left-click. Included data points are marked
with a blue circle. To select multiple data points, click the left mouse button
and drag the selection rubber band so that the rubber band box encompasses
the desired data points. Note that the GUI identifies sectioned data with gray
strips. You cannot graphically include sectioned data.

As shown below, the first and last eight months of data are excluded from
the data set by sectioning, and the two outliers are excluded graphically.
Note that the graphically excluded data points are identified in the Check to
exclude point table. If you decide to include an excluded data point using
the table, the graph is automatically updated.

.} Select Points for Excluded Set i =]

&g

The x's indicate data . . .
points excluded manually. x a0 Included

Excluded
Outside domain/range
The vertical gray strips
indicate data points \
sectioned by domain. A Y. [=

% % o o] %% #: manth
15 e} %@9
O? @c@é? g @o o] O@ Og Selecting Points:
@) % C&O o) (@ * Excludes Them
10 o @BTo & " Includes Them
@ =3 am
o @lo o ©

g ° Cégo 0l B B Evclude Al |
0 I @ I Include Al |

Close

'

If there are fits associated with the data, you can exclude data points based on
the residuals of the fit by selecting the residual data in the Y list.

2-34

Importing, Viewing, and Preprocessing Data

The Exclude GUI for this example is shown below.

<} Exclude

=1olx]

Existing exlusion rules:

Exclusion rule name: |enso_exc1

~Exclude Point:

secl

secl
Select data set: Ienso VI Exclude graphically |

Checkto exclude paint:

Index H A4
(158 158 138 B Individual data points
160 160 8.7 | marked for exclusion.
161 161 8.6 =
~Exclude Section Data points outside the
Exclude X [= =] B Exclude % [-= =] [Ta1 specified domain are

5 | — = marked for exclusion.

Exclude ¥ [== =] Exclude ¥ == =| | Comy | pr— |

| Create exclusion rule I Eenarme | Delete |

Close | Help |

To save the exclusion rule, click the Create exclusion rule button. To
exclude the data from a fit, you must select the exclusion rule from the Fitting
GUI. Because the exclusion rule created in this example uses individually

excluded data points, you can use it only with data sets that are the same
size as the ENSO data set.

Viewing the Exclusion Rule. To view the exclusion rule, select an existing
exclusion rule name and click the View button.

2-35

2 Interactive Curve Fitting

The View Exclusion Rule GUI shown below displays the modified ENSO data
set and the excluded data points, which are grayed in the table.

=10
Exclusion rule: ensol_excl Index W Yo |weights
. 1 1 128 N
Data set: ensol
2 2 11.3 J
3 3 10.6 .
N} ' i 113 The excluded data points
5 g 108 are grayed in the table.
1 3 6 75
7 7 77
8 8 1.7
+ + 3 +
. L P] g 12.9
+ + -
}fl?g.;?,{;&’ ‘«t‘ 10 10 [143
A ”’.’:*3“ .ﬁ -~ 1 11 10.9
AR LR DO T 12 12 137
* . 13 13 17.1
14 14 14
15 15 16.3
8=X=161 16 16 8.5
17 17 AT

Example: Sectioning Periodic Data

For all parametric equations, the toolbox provides coefficient starting

values. For certain types of data sets such as periodic data containing many
periods, the starting values may not lead to satisfactory results. In this case,
sectioning the data can provide you with improved starting values for the fit.

This example uses generated sine data with noise added. The time vector
is given by t and the amplitude, frequency, and phase constant of the data
are given by the vector cf.

rand('state',0);

t = [0:0.005:1.0]";

cf = [10 16*pi pi/4];

noisysine = cf(1)*(sin(cf(2)*t+cf(3))) + (rand(size(t))-0.5);

2-36

Importing, Viewing, and Preprocessing Data

Import the variables t and noisysine, and fit the data with a single-term
sine equation. The Fitting GUI, Fit Options GUI, and Curve Fitting Tool are
shown below. To display the fit starting values, click the Fit options button.
Note that the amplitude starting point is reasonably close to the expected
value, but the frequency and phase constant are not, which produces a poor fit.

+} Fittimg =IC] =

Fit bt
b it Zepr e |
Fi. wane. t=gEl|
Lin g v e ﬂ Parbsar e | e j
wo etk | e -mbirders B T sl 4 44

B -, Mwrvr: Fitling Trrd ERIE

Fiz T b Hep
& [B 7]
[ev.r | Eed k.. | “lin; . | Ak |
[N
" o &l Y Dok |
fiordrass o2 fit: Fa % A i &;_ B el
IEE 2.4 b i o Ut H o ~ i
e B BER Do = P Y a0 i LS
FEATEITE A TEDRN N IAT T o o i [“
ZHEG. 7Lk -5 -
., o - [N P vooon
= o 2 o MR .
- . ., o . -
Tatla o Fite E - e I M -

] " . P
-) 43, P T T
s n et By ‘ [f e o
e rl el “2’? & % J f’-"’ 4 -x? B
3 B ¢
e a3 P I
il &P @ - R i T A [

wiews | o
wokazak [@)
o =
e [=
n [s

amroe | mutew | e | e |
1 (R

: S :I_ The amplitude starting point is reasonably
: T —T dlose o the expecied volue, but the
frequency and phase constant are not.

To produce a reasonable fit, follow these steps:

2-37

2 Interactive Curve Fittin

g

2-38

1 Create an exclusion rule that includes one or two periods, and excludes

the remaining data.

As shown below, an exclusion rule is created graphically by using the
selection rubber band to exclude all data points outside the first period.
The exclusion rule is named 1Period.

L) enclude ~=lol x|

Exclusion rule name: [1 Period

Existing exclusion rules:

~Exclude Point:

Check to exclude point:

Select data set: Inoisysine wa. t VI Exclude graphically |

Exclude data

graphically.

=10l x|

Index X i
1)1 0 75212 -
]2 0.005 8.33856
|3 0.0 970878 =l
~Exclude Sections -} Select Points for Excluded Set
Exclude [= =] | J_H » P
Exclude ¥ |<: vl |
10+ % fe * % # S e 1
e} ;§ * X% e % #y
= C>< e M % i
[*.0] o O L w PR
Bt % i
o] OX w % o L o
4r o] S ® ® M S *® b
3 o % # w >< w F w
ol (8] folhe . LV, y - = . S L o
s
2r © o] I ® w T ox *ox * PEEEE
| © ® # *® ®]
-4 5 v x oMy % . % .
B OO T w X * % PR T
o XX % % .
B ® e My S q
. o] 32, 3
Use the selection rubber band 8 X >:: N
. . Aok ooz _
to exclude data points outside 10 . x EE
the first period. 0 02 04 06 08 1

O Included
Excluded

Y I noisysine ¥ l

Bt

Selecting Points:
¢ Excludes Them
" Includes Them

Exclude Al |

Include &l

Cloze

4

2 Create a new fit using the single-term sine equation with the exclusion

rule 1Period applied.

Importing, Viewing, and Preprocessing Data

The fit looks reasonable throughout the entire data set. However, because
the global fit was based on a small fraction of data, goodness of fit statistics
will not provide much insight into the fit quality.

~ Titting =] B3
T Cdkor
=0 || Eme
| tMowce et Lo
P [~[— Apply exclusion rule 1o the single-term
exponential fit

T

LA B TR R

al-dnibl el DMk,
(ML A [

FAE: bocLa

Ceats 1 GEwsto workipaze. . I

The glohal fit looks reasonable
dlthough an accurate evaluation of
the goodness of fit is not possible.

3 Fit the entire data set using the fitted coefficient values from the previous
step as starting values.

2-39

2 Interactive Curve Fitting

The Fitting GUI, Fit Options GUI, and Curve Fitting Tool are shown below.
Both the numerical and graphical fit results indicate a reasonable fit.

«}} Filkinn ={n] =
Al Frillnr
R I I Ly I

RS TN-H ael

Mo 4 5l Irl|>_-">: —I Fadisin ik G |
[FLT-18 4 I [E N TS 'I I Saver ard 2cms 2 ooty
L

S oul Sin Saedres

'z 4211 S 2

12T 4111 A PIEYY 621 =) ‘-!n_lzm
A N TR SR T 1

(R N TN

PP . _'.—.a..l m| L:.ne..l B | natess |

Tz s ZATE s ans =10

RIETTES

PRI s ,,,,M w: 3.94935
SHBE O GLDG
Table af THE
M=z 2xle sec Tz 33
=il LELEFEE Y BTN =TT =)) Epc =)
el L (= SR N R P RN L1 g 1 I PR e LT

Saklaf] KA B R

Fuand ET -
Ly iin TR =

TFn | 1= 1 B N - [
T 1=
Ursgems | tsteore | e

- _ |
v om W n]— The coeficient starfing values
S are given by the previous fit results.

Additional Preprocessing Steps

Additional preprocessing steps not available through the Curve Fitting
Toolbox GUIs include

® Transforming the Response Data

®* Removing Infs, NaNs, and Outliers

2-40

Importing, Viewing, and Preprocessing Data

Transforming Response Data

In some circumstances, you might want to transform the response data.
Common transformations include the logarithm In(y), and power functions
such as y2, 1, and so on. Using these transformations, you can linearize a
nonlinear model, contract response data that spans one or more orders of
magnitude, or simplify a model so that it involves fewer coefficients.

Note You must transform variables at the MATLAB command line, and then
import those variables into the Curve Fitting Toolbox. You cannot transform
variables using any of the graphical user interfaces.

For example, suppose you want to use the following model to fit your data.

1

yE=—
ax +bx+e

If you decide to use the power transform y!, then the transformed model is
given by

2
y =ax +bx+e

As another example, the equation

bx
Y = ae

becomes linear if you take the log transform of both sides.
In(v) = In(a) + bx
You can now use linear least squares fitting procedures.
There are several disadvantages associated with performing transformations:

¢ For the log transformation, negative response values cannot be processed.

2-41

2 Interactive Curve Fitting

2-42

¢ For all transformations, the basic assumption that the residual variance
is constant is violated. To avoid this problem, you could plot the residuals
on the transformed scale. For the power transformation shown above, the
transformed scale is given by the residuals

-1 .-1
=% —-X

Note that the residual plot associated with the Curve Fitting Tool does not
support transformed scales.

Deciding on a particular transformation is not always obvious. However,

a scatter plot will often reveal the best form to use. In practice you can
experiment with various transforms and then plot the residuals from the
command line using the transformed scale. If the errors are reasonable
(they appear random with minimal scatter, and don’t exhibit any systematic
behavior), the transform is a good candidate.

Removing Infs, NaNs, and Outliers

Although the Curve Fitting Toolbox ignores Infs and NaNs when fitting data,
and you can exclude outliers during the fitting process, you might still want
to remove this data from your data set. To do so, you modify the associated
data set variables from the MATLAB command line.

For example, when using toolbox functions such as fit from the command
line, you must supply predictor and response vectors that contain finite
numbers. To remove Infs, you can use the isinf function.

ind(isinf (xx));
=11;
=11;
To remove NaNs, you can use the isnan function. For examples that remove
NaNs and outliers from a data set, refer to “Removing and Interpolating
Missing Values” in the MATLAB documentation.

Importing, Viewing, and Preprocessing Data

Selected Bibliography

[1] Cleveland, W.S., “Robust Locally Weighted Regression and Smoothing
Scatterplots,” Journal of the American Statistical Association, Vol. 74, pp.
829-836, 1979.

[2] Cleveland, W.S. and S.J. Devlin, “Locally Weighted Regression: An
Approach to Regression Analysis by Local Fitting,” Journal of the American
Statistical Association, Vol. 83, pp. 596-610, 1988.

[3] Chambers, J., W.S. Cleveland, B. Kleiner, and P. Tukey, Graphical Methods
for Data Analysis, Wadsworth International Group, Belmont, CA, 1983.

[4] Press, W.H., S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical
Recipes in C, The Art of Scientific Computing, Cambridge University Press,
Cambridge, England, 1993.

[5] Goodall, C., “A Survey of Smoothing Techniques,” Modern Methods of Data
Analysis, (J. Fox and J.S. Long, eds.), Sage Publications, Newbury Park, CA,
pp. 126-176, 1990.

[6] Hutcheson, M.C., “Trimmed Resistant Weighted Scatterplot Smooth,”
Master’s Thesis, Cornell University, Ithaca, NY, 1995.

[7] Orfanidis, S.J., Introduction to Signal Processing, Prentice-Hall,
Englewood Cliffs, NdJ, 1996.

2-43

2 Interactive Curve Fitting

Fitting Data

This section describes how to fit data and evaluate the fit with the Curve

Fitting Toolbox.
The Fitting Process (p. 2-44) Steps to follow when fitting any data
set
Parametric Fitting (p. 2-46) Fit data with parametric models
Nonparametric Fitting (p. 2-116) Fit data with nonparametric models
Selected Bibliography (p. 2-124) References

The Fitting Process

You fit data using the Fitting GUI. To open the Fitting GUI, click the Fitting
button from the Curve Fitting Tool.

The Fitting GUI is shown below for the census data described in Chapter 1,

“Getting Started”, followed by the general steps you use when fitting any
data set.

2-44

Fitting Data

CICTTEE— RI=TEY
Fit Editor
Newdt | comyit_| 1. Seledt a data set and specify
Fit Marne: |p0|y5 a fit name.
Dataset |pop vs. cdate || Exclusion rule: fnone) *|+— 2.Select an exclusion ruke.
Type of fit: |POIyn0mia| LI v Center and scale ¥ data
Folynamial T
cubic polynamial ;I
4th degree polynamial
ath degree polynamial
Bth degree polynamial -
Fit options... | [Immediate apply Cancel | Apply |
Results 3. Select a fit type, select fit
Linear model Poly5: = — opﬁons, ﬁi ihe dlﬂﬂ, ﬂl'ld

£ix) = pl¥=*5 + p2*x*d + p3Fx*3 + pdFH*E + pSFx + pb
where ¥ is normalized by mean 1590 and std 62.05
Coefficients (with 95% confidence bounds):

evaluate the goodness of fit.

pl = 0.5877 (-2.305, 3.48)

pZ = 0.7047 (-1.684, 3.094) =

p3 = -0.9193 (-10.1%9, &.356)

pd = 23.47 (17.42, 29.52)

ps = 74,97 (68.37, 81.57)

pé = 62,23 (59.51, 64.95) -
Table of Fits T

MName Data set Type SSE Adj R-sq

paolyd popvs. cdate |Polynamial

106.92758 0.99876 -
o te L BE15

T T 4. Compare the current fit and data

pap vs. cdate 145.96892 |0.99852 set fo other fits and data sefs.
paly3 popvs. cdate |Polynamial 149 76872 0998457
paly2 popvs. cdate |Polynamial 169.0293 0998457 -
expl popvs. cdate |Exponential G884 66126 |0.941358 =
Delete fit Save to workspace...\l Tahle options... | 5 Su\re 'he seleded ﬁi resuhs o

"\

the workspace.

Close |

1 Select a data set and fit name.

¢ Select the name of the current fit. When you click New fit or Copy fit,
a default fit name is automatically created in the Fit name field. You
can specify a new fit name by editing this field.

e Select the name of the current data set from the Data set list. All
imported and smoothed data sets are listed.

2 Select an exclusion rule.

2-45

2 Interactive Curve Fitting

2-46

If you want to exclude data from a fit, select an exclusion rule from the
Exclusion rule list. The list contains only exclusion rules that are
compatible with the current data set. An exclusion rule is compatible with
the current data set if their lengths are identical, or if it is created by
sectioning only.

3 Select a fit type and fit options, fit the data, and evaluate the goodness of fit.

® The fit type can be a library or custom parametric model, a smoothing
spline, or an interpolant.

® Select fit options such as the fitting algorithm, and coefficient starting
points and constraints. Depending on your data and model, accepting
the default fit options often produces an excellent fit.

¢ Fit the data by clicking the Apply button or by selecting the Immediate
apply check box.

e Examine the fitted curve, residuals, goodness of fit statistics, confidence
bounds, and prediction bounds for the current fit.
4 Compare fits.

¢ Compare the current fit and data set to previous fits and data sets by
examining the goodness of fit statistics.

e Use the Table Options GUI to modify which goodness of fit statistics are
displayed in the Table of Fits. You can sort the table by clicking on
any column heading.

5 Save the fit results.

If the fit is good, save the results as a structure to the MATLAB workspace.
Otherwise, modify the fit options or select another model.

Parametric Fitting

Parametric fitting involves finding coefficients (parameters) for one or more
models that you fit to data. The data is assumed to be statistical in nature
and is divided into two components: a deterministic component and a random
component.

data = deterministic component + random component

Fitting Data

The deterministic component is given by a parametric model and the random
component is often described as error associated with the data.

data = model + error

The model is a function of the independent (predictor) variable and one or
more coefficients. The error represents random variations in the data that
follow a specific probability distribution (usually Gaussian). The variations
can come from many different sources, but are always present at some level
when you are dealing with measured data. Systematic variations can also
exist, but they can lead to a fitted model that does not represent the data well;
see “Evaluating the Goodness of Fit” on page 2-71.

The model coefficients often have physical significance. For example,
suppose you have collected data that corresponds to a single decay mode of a
radioactive nuclide, and you want to estimate the half-life (T, ,) of the decay.
The law of radioactive decay states that the activity of a radioactive substance
decays exponentially in time. Therefore, the model to use in the fit is given by

ket
Y = ype

where y, is the number of nuclei at time ¢ = 0, and A is the decay constant.
The data can be described by

—At
data = ype =~ +error

Both y, and A are coefficients that are estimated by the fit. Because T',

= In(2)/A, the fitted value of the decay constant yields the fitted half-life.
However, because the data contains some error, the deterministic component
of the equation cannot be determined exactly from the data. Therefore, the
coefficients and half-life calculation will have some uncertainty associated
with them. If the uncertainty is acceptable, then you are done fitting the data.
If the uncertainty is not acceptable, then you might have to take steps to
reduce it either by collecting more data or by reducing measurement error
and collecting new data and repeating the model fit.

2-47

2 Interactive Curve Fitting

2-48

In other situations where there is no theory to dictate a model, you might also
modify the model by adding or removing terms, or substitute an entirely
different model.

Basic Assumptions About the Error

When fitting data that contains random variations, there are two important
assumptions that are usually made about the error:

¢ The error exists only in the response data, and not in the predictor data.

e The errors are random and follow a normal (Gaussian) distribution with
zero mean and constant variance, ¢2.

The second assumption is often expressed as
2
error ~- N(0D, ¢)

The components of this expression are described below.

Normal Distribution. The errors are assumed to be normally distributed
because the normal distribution often provides an adequate approximation
to the distribution of many measured quantities. Although the least squares
fitting method does not assume normally distributed errors when calculating
parameter estimates, the method works best for data that does not contain a
large number of random errors with extreme values. The normal distribution
is one of the probability distributions in which extreme random errors are
uncommon. However, statistical results such as confidence and prediction
bounds do require normally distributed errors for their validity.

Zero Mean. If the mean of the errors is zero, then the errors are purely
random. If the mean is not zero, then it might be that the model is not the
right choice for your data, or the errors are not purely random and contain
systematic errors.

Constant Variance. A constant variance in the data implies that the
“spread” of errors is constant. Data that has the same variance is sometimes
said to be of equal quality.

Fitting Data

The assumption that the random errors have constant variance is not implicit
to weighted least squares regression. Instead, it is assumed that the weights
provided in the fitting procedure correctly indicate the differing levels of
quality present in the data. The weights are then used to adjust the amount
of influence each data point has on the estimates of the fitted coefficients to
an appropriate level.

The Least Squares Fitting Method

The Curve Fitting Toolbox uses the method of least squares when fitting data.
The fitting process requires a model that relates the response data to the
predictor data with one or more coefficients. The result of the fitting process
is an estimate of the “true” but unknown coefficients of the model.

To obtain the coefficient estimates, the least squares method minimizes the
summed square of residuals. The residual for the ith data point r, is defined as
the difference between the observed response value y; and the fitted response

value j"':',, and is identified as the error associated with the data.
'y =Xi—0i
residual = data —fit

The summed square of residuals is given by

where n is the number of data points included in the fit and S is the sum of
squares error estimate. The supported types of least squares fitting include
® Linear least squares

® Weighted linear least squares

® Robust least squares

® Nonlinear least squares

2-49

2 Interactive Curve Fitting

Linear Least Squares. The Curve Fitting Toolbox uses the linear least
squares method to fit a linear model to data. A linear model is defined as

an equation that is linear in the coefficients. For example, polynomials are
linear but Gaussians are not. To illustrate the linear least squares fitting
process, suppose you have n data points that can be modeled by a first-degree
polynomial.

VY = PixX+pg

To solve this equation for the unknown coefficients p, and p,, you write S as a
system of n simultaneous linear equations in two unknowns. If n is greater
than the number of unknowns, then the system of equations is overdetermined.

n
2
S =) (y;—(pyx;+ Py))
i=1
Because the least squares fitting process minimizes the summed square of the

residuals, the coefficients are determined by differentiating S with respect to
each parameter, and setting the result equal to zero.

as .
E =-2 Z x;(y;—(pqx;+ pg)) = 0

i=1
s n
E = _Eigl(}'i_(plx,;+pgn =0

The estimates of the true parameters are usually represented by b.
Substituting b, and b, for p; and p,, the previous equations become

D x(v; —(bqx; +bg)) = 0
> (= (byx;+by)) = 0

where the summations run from i =1 to n. The normal equations are defined as

2-50

Fitting Data

blzx?+b22xi = inj'i
b121i+nb2 = Zh
Solving for b,
by = ”ZILJ';;—ZI:LZJ'L
nz.x?—{z:ri}g

Solving for b, using the b, value

by = }1(2;}'1—512%}

As you can see, estimating the coefficients p, and p, requires only a few
simple calculations. Extending this example to a higher degree polynomial is
straightforward although a bit tedious. All that is required is an additional
normal equation for each linear term added to the model.

In matrix form, linear models are given by the formula

® y is an n-by-I vector of responses.

* [is a m-by-1 vector of coefficients.

X is the n-by-m design matrix for the model.

® ¢is an n-by-I vector of errors.

For the first-degree polynomial, the n equations in two unknowns are
expressed in terms of y, X, and P as

2-51

2 Interactive Curve Fitting

2-52

v xq 1
3 B 3 pl
= %
Py
v, % 1_

The least squares solution to the problem is a vector b, which estimates the
unknown vector of coefficients 3. The normal equations are given by

xTxw = x7y

where X7 is the transpose of the design matrix X. Solving for b,
T 1.T
b=(X"X) X v

In MATLAB, you can use the backslash operator to solve a system

of simultaneous linear equations for unknown coefficients. Because
inverting X"X can lead to unacceptable rounding errors, MATLAB uses QR
decomposition with pivoting, which is a very stable algorithm numerically.
Refer to Arithmetic Operators in the MATLAB documentation for more
information about the backslash operator and QR decomposition.

You can plug b back into the model formula to get the predicted response
values, V.

% = Xb = Hy
-1
H=-xxTx)y x¥

Fitting Data

A hat (circumflex) over a letter denotes an estimate of a parameter or a
prediction from a model. The projection matrix H is called the hat matrix,
because it puts the hat on y.

The residuals are given by
r=y-3 = (1-Hy

Refer to [1] or [2] for a complete description of the matrix representation
of least squares regression.

Weighted Linear Least Squares. As described in “Basic Assumptions
About the Error” on page 2-48, it is usually assumed that the response data
is of equal quality and, therefore, has constant variance. If this assumption
is violated, your fit might be unduly influenced by data of poor quality. To
improve the fit, you can use weighted least squares regression where an
additional scale factor (the weight) is included in the fitting process. Weighted
least squares regression minimizes the error estimate

where w; are the weights. The weights determine how much each response
value influences the final parameter estimates. A high-quality data point
influences the fit more than a low-quality data point. Weighting your data
is recommended if the weights are known, or if there is justification that
they follow a particular form.

The weights modify the expression for the parameter estimates b in the
following way,

- T -1_p
h=Pp = (X WX) X' Wy
where W is given by the diagonal elements of the weight matrix w.

You can often determine whether the variances are not constant by fitting the
data and plotting the residuals. In the plot shown below, the data contains

2-53

2 Interactive Curve Fitting

2-54

replicate data of various quality and the fit is assumed to be correct. The poor
quality data is revealed in the plot of residuals, which has a “funnel” shape
where small predictor values yield a bigger scatter in the response values
than large predictor values.

100 T T T T T
H data
— fitted curve

33_

m_
.Y

40_

m_

0

0

X

15 T T T T

10F . i
5 [] r

1 . ! 1
o ! S T i t 1 _
-1 F 1 Py H I

5k i i
-0 ' .
-15 1 1 1 1 1

The weights you supply should transform the response variances to a constant
value. If you know the variances of the measurement errors in your data,
then the weights are given by

2
w; = lfﬁi

Or, if you only have estimates of the error variable for each data point, it
usually suffices to use those estimates in place of the true variance. If you

do not know the variances, it suffices to specify weights on a relative scale.
Note that an overall variance term is estimated even when weights have been
specified. In this instance, the weights define the relative weight to each point
in the fit, but are not taken to specify the exact variance of each point.

Fitting Data

For example, if each data point is the mean of several independent
measurements, it might make sense to use those numbers of measurements
as weights.

Robust Least Squares. As described in “Basic Assumptions About the
Error” on page 2-48, it is usually assumed that the response errors follow a
normal distribution, and that extreme values are rare. Still, extreme values
calledoutliers do occur.

The main disadvantage of least squares fitting is its sensitivity to outliers.
Outliers have a large influence on the fit because squaring the residuals
magnifies the effects of these extreme data points. To minimize the influence
of outliers, you can fit your data using robust least squares regression. The
toolbox provides these two robust regression methods:

¢ Least absolute residuals (LAR) — The LAR method finds a curve that
minimizes the absolute difference of the residuals, rather than the squared
differences. Therefore, extreme values have a lesser influence on the fit.

® Bisquare weights — This method minimizes a weighted sum of squares,
where the weight given to each data point depends on how far the point
is from the fitted line. Points near the line get full weight. Points farther
from the line get reduced weight. Points that are farther from the line than
would be expected by random chance get zero weight.

For most cases, the bisquare weight method is preferred over LAR because
it simultaneously seeks to find a curve that fits the bulk of the data using
the usual least squares approach, and it minimizes the effect of outliers.

Robust fitting with bisquare weights uses an iteratively reweighted least
squares algorithm, and follows this procedure:

1 Fit the model by weighted least squares.

2 Compute the adjusted residuals and standardize them. The adjusted
residuals are given by

2-55

2 Interactive Curve Fitting

2-56

r; are the usual least squares residuals and &, are leverages that adjust
the residuals by downweighting high-leverage data points, which have a
large effect on the least squares fit. The standardized adjusted residuals
are given by

ra,ﬂ'j

uzK&

K is a tuning constant equal to 4.685, and s is the robust variance given by
MAD/0.6745 where MAD is the median absolute deviation of the residuals.
Refer to [7] for a detailed description of i, K, and s.

3 Compute the robust weights as a function of u. The bisquare weights are
given by

g 2
w. - [(1_(%}) ;] < 1
0 |ui|21

Note that if you supply your own regression weight vector, the final weight
is the product of the robust weight and the regression weight.

4 If the fit converges, then you are done. Otherwise, perform the next
iteration of the fitting procedure by returning to the first step.

The plot shown below compares a regular linear fit with a robust fit using
bisquare weights. Notice that the robust fit follows the bulk of the data and is
not strongly influenced by the outliers.

Fitting Data

20 T T I T T T T T T
O Data
— Regular linear fit
- — - Robust fit w/bisqua re weights
251 s b

-5 1 1 1 1 1 1 1 1 1

0 2 4 B &8 10 12 14 16 18 20
x

Instead of minimizing the effects of outliers by using robust regression, you
can mark data points to be excluded from the fit. Refer to “Excluding and
Sectioning Data” on page 2-26 for more information.

Nonlinear Least Squares. The Curve Fitting Toolbox uses the nonlinear
least squares formulation to fit a nonlinear model to data. A nonlinear model
is defined as an equation that is nonlinear in the coefficients, or a combination
of linear and nonlinear in the coefficients. For example, Gaussians, ratios of

polynomials, and power functions are all nonlinear.

In matrix form, nonlinear models are given by the formula
v =[f(X,p)+e

where

® yis an n-by-1 vector of responses.

2-57

2 Interactive Curve Fitting

2-58

® fis a function of B and X.

* [is a m-by-1 vector of coefficients.

X is the n-by-m design matrix for the model.

® ¢is an n-by-I vector of errors.

Nonlinear models are more difficult to fit than linear models because the
coefficients cannot be estimated using simple matrix techniques. Instead, an
iterative approach is required that follows these steps:

1 Start with an initial estimate for each coefficient. For some nonlinear
models, a heuristic approach is provided that produces reasonable starting
values. For other models, random values on the interval [0,1] are provided.

2 Produce the fitted curve for the current set of coefficients. The fitted
response value ¥ is given by

y=Ff(X,b)

and involves the calculation of the Jacobian of AX,b), which is defined as a
matrix of partial derivatives taken with respect to the coefficients.

3 Adjust the coefficients and determine whether the fit improves. The
direction and magnitude of the adjustment depend on the fitting algorithm.
The toolbox provides these algorithms:

® Trust-region — This is the default algorithm and must be used if
you specify coefficient constraints. It can solve difficult nonlinear
problems more efficiently than the other algorithms and it represents an
improvement over the popular Levenberg-Marquardt algorithm.

® Levenberg-Marquardt — This algorithm has been used for many years
and has proved to work most of the time for a wide range of nonlinear
models and starting values. If the trust-region algorithm does not
produce a reasonable fit, and you do not have coefficient constraints, you
should try the Levenberg-Marquardt algorithm.

® Gauss-Newton — This algorithm is potentially faster than the other
algorithms, but it assumes that the residuals are close to zero. It’s
included with the toolbox for pedagogical reasons and should be the last
choice for most models and data sets.

Fitting Data

For more information about the trust region algorithm, refer to [4]

and to “Trust-Region Methods for Nonlinear Minimization” in the
Optimization Toolbox documentation. For more information about the
Levenberg-Marquardt and Gauss-Newton algorithms, refer to “Nonlinear
Least-Squares Implementation” in the same guide. Additionally, the
Levenberg-Marquardt algorithm is described in [5] and [6].

4 Tterate the process by returning to step 2 until the fit reaches the specified
convergence criteria.

You can use weights and robust fitting for nonlinear models, and the fitting
process is modified accordingly.

Because of the nature of the approximation process, no algorithm is foolproof
for all nonlinear models, data sets, and starting points. Therefore, if you do
not achieve a reasonable fit using the default starting points, algorithm, and
convergence criteria, you should experiment with different options. Refer to
“Specifying Fit Options” on page 2-67 for a description of how to modify the
default options. Because nonlinear models can be particularly sensitive to the
starting points, this should be the first fit option you modify.

Library Models

The parametric library models provided by the Curve Fitting Toolbox are
described below.

Exponentials. The toolbox provides a one-term and a two-term exponential
model.

y=ae
bx dx
y=ae +ce
Exponentials are often used when the rate of change of a quantity is
proportional to the initial amount of the quantity. If the coefficient associated
with e is negative, y represents exponential decay. If the coefficient is positive,

y represents exponential growth.

For example, a single radioactive decay mode of a nuclide is described by a
one-term exponential. a is interpreted as the initial number of nuclei, b is the

2-59

2 Interactive Curve Fitting

2-60

decay constant, x is time, and y is the number of remaining nuclei after a
specific amount of time passes. If two decay modes exist, then you must use
the two-term exponential model. For each additional decay mode, you add
another exponential term to the model.

Examples of exponential growth include contagious diseases for which a cure
is unavailable, and biological populations whose growth is uninhibited by
predation, environmental factors, and so on.

Fourier Series. The Fourier series is a sum of sine and cosine functions
that is used to describe a periodic signal. It is represented in either the
trigonometric form or the exponential form. The toolbox provides the
trigonometric Fourier series form shown below,

n
y =ag+ z a;cos(nwx) + b, sin(nwx)
i=1

where a, models a constant (intercept) term in the data and is associated with
the i = 0 cosine term, w is the fundamental frequency of the signal, n is the
number of terms (harmonics) in the series, and 1 =n < 8.

For more information about the Fourier series, refer to “Fourier Analysis” in
the MATLAB documentation. For an example that fits the ENSO data to

a custom Fourier series model, refer to “Example: Custom Model (Fourier
Series)” on page 2-99.

Gaussian. The Gaussian model is used for fitting peaks, and is given by
the equation

where a is the amplitude, b is the centroid (location), ¢ is related to the peak
width, 7 is the number of peaks to fit, and 1 <n < 8.

Fitting Data

Gaussian peaks are encountered in many areas of science and engineering.
For example, line emission spectra and chemical concentration assays can be
described by Gaussian peaks. For an example that fits two Gaussian peaks
and an exponential background, refer to “Example: Custom Model (Gaussian
with Exponential Background)” on page 2-105.

Polynomials. Polynomial models are given by

n+1l

+1-i
y= Y px 70
i1

where n + 1 is the order of the polynomial, n is the degree of the polynomial,
and 1 =7 =< 9. The order gives the number of coefficients to be fit, and the
degree gives the highest power of the predictor variable.

In this guide, polynomials are described in terms of their degree. For example,
a third-degree (cubic) polynomial is given by

3)
V = P1X +PgX + PgX+ Py

Polynomials are often used when a simple empirical model is required. The
model can be used for interpolation or extrapolation, or it can be used to
characterize data using a global fit. For example, the temperature-to-voltage
conversion for a Type J thermocouple in the 0° to 760° temperature range is
described by a seventh-degree polynomial.

Note If you do not require a global parametric fit and want to maximize the
flexibility of the fit, piecewise polynomials might provide the best approach.
Refer to “Nonparametric Fitting” on page 2-116 for more information.

The main advantages of polynomial fits include reasonable flexibility for data
that is not too complicated, and they are linear, which means the fitting
process is simple. The main disadvantage is that high-degree fits can become
unstable. Additionally, polynomials of any degree can provide a good fit
within the data range, but can diverge wildly outside that range. Therefore,

2-61

2 Interactive Curve Fitting

2-62

you should exercise caution when extrapolating with polynomials. Refer
to “Determining the Best Fit” on page 1-11 for examples of good and poor
polynomial fits to census data.

Note that when you fit with high-degree polynomials, the fitting procedure
uses the predictor values as the basis for a matrix with very large values,
which can result in scaling problems. To deal with this, you should normalize
the data by centering it at zero mean and scaling it to unit standard deviation.
You normalize data by selecting the Center and scale X data check box on
the Fitting GUL

Power Series. The toolbox provides a one-term and a two-term power
series model.

b
Yy =ax

[
a+bx

y

Power series models are used to describe a variety of data. For example, the
rate at which reactants are consumed in a chemical reaction is generally
proportional to the concentration of the reactant raised to some power.

Rationals. Rational models are defined as ratios of polynomials and are
given by

n+1l
n+l1-i
2. i
i=1
m

m m-—1i
x +§:mx
i=1

j.':

where n is the degree of the numerator polynomial and 0 < 1 < 5, while m
is the degree of the denominator polynomial and 1 < 771 < 5. Note that the
coefficient associated with x” " is always 1. This makes the numerator and
denominator unique when the polynomial degrees are the same.

Fitting Data

In this guide, rationals are described in terms of the degree of the
numerator/the degree of the denominator. For example, a quadratic/cubic
rational equation is given by

2
Pqx + p2x+ Py

3 2
X +Q1I +q2x+q3

Like polynomials, rationals are often used when a simple empirical model
is required. The main advantage of rationals is their flexibility with data
that has complicated structure. The main disadvantage is that they become
unstable when the denominator is around zero. For an example that uses
rational polynomials of various degrees, refer to “Example: Rational Fit”
on page 2-87.

Sum of Sines. The sum of sines model is used for fitting periodic functions,
and is given by the equation

n
N = Z a;sin(b.x +¢;)
i=1

where a is the amplitude, b is the frequency, and c is the phase constant for
each sine wave term. n is the number of terms in the seriesand1 <n < 8.
This equation is closely related to the Fourier series described previously. The
main difference is that the sum of sines equation includes the phase constant,
and does not include a constant (intercept) term.

Weibull Distribution. The Weibull distribution is widely used in reliability
and life (failure rate) data analysis. The toolbox provides the two-parameter
Weibull distribution

-1 —ax”
v =abx e

where a is the scale parameter and b is the shape parameter. Note that there
is also a three-parameter Weibull distribution with x replaced by x — ¢ where
c is the location parameter. Additionally, there is a one-parameter Weibull

2-63

2 Interactive Curve Fitting

distribution where the shape parameter is fixed and only the scale parameter
is fitted. To use these distributions, you must create a custom equation.

Note that the Curve Fitting Toolbox does not fit Weibull probability
distributions to a sample of data. Instead, it fits curves to response and
predictor data such that the curve has the same shape as a Weibull
distribution.

Custom Models

If the toolbox library does not contain the desired parametric equation, you
can create your own custom model. Library models, however, offer the best
chance for rapid convergence. This is because

¢ For most models, optimal default coefficient starting points are calculated.
For custom equations, the default starting points are chosen at random on
the interval [0,1]. Refer to “Default Coefficient Parameters” on page 2-70
for more information.

¢ An analytic Jacobian is used instead of finite differencing.

¢ When using the Analysis GUI, analytic derivatives are calculated as well
as analytic integrals if the integral can be expressed in closed form.

Note To save custom equations for later use, you should save the curve-fitting
session with the File > Save Session menu item.

You create custom equations with the Create Custom Equation GUI. The
GUI contains two panes: a pane for creating linear equations and a pane for
creating general (nonlinear) equations. These panes are described below.

2-64

Fitting Data

Linear Equations. Linear models are defined by equations that are linear
in the parameters. For example, the polynomial library equations are linear.

The Linear Equations pane is shown below followed by a description of its

parameters.

<) Create Custom Equation

| ceneral Equations |
Independent variahle: |>-<
Equation

Unknawn
Coefiicients Terms

=0l x|

h = |a * |sin(x-pi)

o

[+ Unknown constant coeficient

Equation: arisinf- pin+c

Add a term | |

Equation name: |a*(sin(x— piy+c

[o]%4 | Cancel | Help |

¢ Independent variable — Symbol representing the independent

(predictor) variable. The default symbol is x.

e Equation — Symbol representing the dependent (response) variable
followed by the linear equation. The default symbol is y.

= Unknown Coefficients — The unknown coefficients to be determined

by the fit. The default symbols are a, b, ¢, and so on.

= Terms — Functions that depend only on the independent variable and

constants. Note that if you attempt to define a term that contains a

coefficient to be fitted, an error is returned.

= Unknown constant coefficient — If selected, a constant term is
included in the equations to be fit. Otherwise, a constant term is not

included.

= Add a term — Add a term to the equation. An unknown coefficient is
automatically added for each new term.

= Remove last term — Remove the last term added to the equation.

2-65

2 Interactive Curve Fitting

2-66

* Equation — The custom equation.

¢ Equation name — The name of the equation. By default, the name is
automatically updated to be identical to the custom equation given by
Equation. If you override the default, the name is no longer automatically
updated.

General Equations. General (nonlinear) equations are defined as equations
that are nonlinear in the parameters, or are a combination of linear and
nonlinear in the parameters. For example, the exponential library equations
are nonlinear. The General Equations pane is shown below followed by a
brief description of its parameters.

<) Create Custom Equation _I_I— | 5'
Linear Equations ©Seneral Equations |
Independent variahle: Fc
Equation: Jy = Ja*expi-br)+c
Unknowns | StartPoint Lowver Upper
a 0.887 -Inf] Inf
h 0.284 -Inf] Inf
C 0310 -Inf| Inf

Equation name: |a*exp(—b*>{)+c

[o]’4 | Cancel | Help |

¢ Independent variable — Symbol representing the independent
(predictor) variable. The default symbol is x.

¢ Equation — Symbol representing the dependent (response) variable
followed by the general equation. As you type in the terms of the equation,
the unknown coefficients, associated starting values, and constraints
automatically populate the table. By default, the starting values are
randomly selected on the interval [0,1] and are unconstrained.

You can immediately change the default starting values and constraints in
this table, or you can change them later using the Fit Options GUI.

Fitting Data

¢ Equation name — The name of the equation. By default, the name is
automatically updated to be identical to the custom equation given by
Equation. If you override the default, the name is no longer automatically
updated.

Note that even if you define a linear equation, a nonlinear fitting procedure is
used. Although this is allowed by the toolbox, it is an inefficient process and
can result in less than optimal fitted coefficients. Instead, you should use the
Linear Equations pane to define the equation.

Specifying Fit Options

You specify fit options with the Fit Options GUI. The fit options for the
single-term exponential are shown below. The coefficient starting values and
constraints are for the census data.

< Fit Options for expl Xl
hethod: MonlinearLeastSquares -
Rohust: |ort =l'| | Fitting method and algorithm
Algarithm: |Trust—Regiun j
DifinChange: 10E8 | | pw e .

! L Finite differencing parameters
DiffaxChange: | o1 | _|
MaxFunEvals: | GO0 7]
Maxiter: | 400 . .

— Fit convergence criteria

TalFun: | 1.0E-6
Tali; | 1.0E-6 | _|
Unknowns| StatPoint| Lower Upper
a 8.04e-14 -Inf] i | | Coefficient parameters
b 1.81e-02 -Inf In

The available GUI options depend on whether you are fitting your data using
a linear model, a nonlinear model, or a nonparametric fit type. All the options
described below are available for nonlinear models. Method, Robust, and
coefficient constraints (Lower and Upper) are available for linear models.

2-67

2 Interactive Curve Fitting

2-68

Interpolants and smoothing splines include Method, but no configurable
options.

Fitting Method and Algorithm.

¢ Method — The fitting method.

The method is automatically selected based on the library or custom model
you use. For linear models, the method is LinearLeastSquares. For
nonlinear models, the method is NonlinearLeastSquares.

¢ Robust — Specify whether to use the robust least squares fitting method.
The values are

= Off — Do not use robust fitting (default).
= On — Fit with default robust method (bisquare weights).
= LAR — Fit by minimizing the least absolute residuals (LAR).

Bisquare — Fit by minimizing the summed square of the residuals,
and downweight outliers using bisquare weights. In most cases, this is
the best choice for robust fitting.

¢ Algorithm — Algorithm used for the fitting procedure:

= Trust-Region — This is the default algorithm and must be used if you
specify coefficient constraints.

= Levenberg-Marquardt — If the trust-region algorithm does not
produce a reasonable fit, and you do not have coefficient constraints, you
should try the Levenberg-Marquardt algorithm.

= Gauss-Newton — This algorithm is included for pedagogical reasons
and should be the last choice for most models and data sets.

Finite Differencing Parameters.

¢ DiffMinChange — Minimum change in coefficients for finite difference
Jacobians. The default value is 108,

¢ DiffMaxChange — Maximum change in coefficients for finite difference
Jacobians. The default value is 0.1.

Note that DiffMinChange and DiffMaxChange apply to

Fitting Data

® Any nonlinear custom equation — that is, a nonlinear equation that you
write.

® Some, but not all, of the nonlinear equations provided with the Curve
Fitting Toolbox.

However, DiffMinChange and DiffMaxChange do not apply to any linear
equations.

Fit Convergence Criteria.

¢ MaxFunEvals — Maximum number of function (model) evaluations
allowed. The default value is 600.

¢ MaxIter — Maximum number of fit iterations allowed. The default value
is 400.

¢ TolFun — Termination tolerance used on stopping conditions involving the
function (model) value. The default value is 10°.

¢ TolX — Termination tolerance used on stopping conditions involving the
coefficients. The default value is 107,

Coefficient Parameters.

¢ Unknowns — Symbols for the unknown coefficients to be fitted.

¢ StartPoint — The coefficient starting values. The default values depend
on the model. For rational, Weibull, and custom models, default values are
randomly selected within the range [0,1]. For all other nonlinear library
models, the starting values depend on the data set and are calculated
heuristically.

¢ Lower — Lower bounds on the fitted coefficients. The bounds are used
only with the trust region fitting algorithm. The default lower bounds for
most library models are - Inf, which indicates that the coefficients are
unconstrained. However, a few models have finite default lower bounds.
For example, Gaussians have the width parameter constrained so that it
cannot be less than 0.

¢ Upper — Upper bounds on the fitted coefficients. The bounds are used
only with the trust region fitting algorithm. The default upper bounds

2-69

2 Interactive Curve Fitting

2-70

for all library models are Inf, which indicates that the coefficients are
unconstrained.

For more information about these fit options, refer to “Optimization Options”
in the Optimization Toolbox documentation.

Default Coefficient Parameters. The default coefficient starting points and
constraints for library and custom models are given below. If the starting
points are optimized, then they are calculated heuristically based on the
current data set. Random starting points are defined on the interval [0,1] and
linear models do not require starting points.

If a model does not have constraints, the coefficients have neither a lower
bound nor an upper bound. You can override the default starting points and

constraints by providing your own values using the Fit Options GUI.

Default Starting Points and Constraints

Model Starting Points Constraints
Custom linear N/A None
Custom nonlinear Random None
Exponentials Optimized None
Fourier series Optimized None
Gaussians Optimized ¢, >0
Polynomials N/A None
Power series Optimized None
Rationals Random None
Sum of sines Optimized b,>0
Weibull Random a,b>0

Note that the sum of sines and Fourier series models are particularly sensitive
to starting points, and the optimized values might be accurate for only a few
terms in the associated equations. For an example that overrides the default
starting values for the sum of sines model, refer to “Example: Sectioning
Periodic Data” on page 2-36.

Fitting Data

Evaluating the Goodness of Fit

After fitting data with one or more models, you should evaluate the goodness
of fit. A visual examination of the fitted curve displayed in the Curve Fitting
Tool should be your first step. Beyond that, the toolbox provides these
methods to assess goodness of fit for both linear and nonlinear parametric fits:

¢ Residual analysis
® Goodness of fit statistics

¢ Confidence and prediction bounds

As is common in statistical literature, the term goodness of fit is used here
in several senses: A “good fit” might be a model

¢ that your data could reasonably have come from, given the assumptions of
least-squares fitting

¢ in which the model coefficients can be estimated with little uncertainty

¢ that explains a high proportion of the variability in your data, and is able
to predict new observations with high certainty

A particular application might dictate still other aspects of model fitting that
are important to achieving a good fit, such as a simple model that is easy to
interpret. The methods described here can help you determine goodness of
fit in all these senses.

Note that the methods described under “Goodness-of-Fit Statistics” on

page 2-74 use statistics that measure goodness of fit in terms of how much
variability in your data is explained by a fit, and how useful a fit will be for
prediction. However, you should keep other aspects of goodness of fit in mind
as well.

These methods group into two types: graphical and numerical. Plotting
residuals and prediction bounds are graphical methods that aid visual
interpretation, while computing goodness-of-fit statistics and coefficient
confidence bounds yield numerical measures that aid statistical reasoning.

Generally speaking, graphical measures are more beneficial than numerical

measures because they allow you to view the entire data set at once, and they
can easily display a wide range of relationships between the model and the

2-71

2 Interactive Curve Fitting

2-72

data. The numerical measures are more narrowly focused on a particular
aspect of the data and often try to compress that information into a single
number. In practice, depending on your data and analysis requirements, you
might need to use both types to determine the best fit.

Note that it is possible that none of your fits can be considered suitable for
your data, based on these methods. In this case, it might be that you need

to select a different model. It is also possible that all the goodness-of-fit
measures indicate that a particular fit is suitable. However, if your goal is to
extract fitted coefficients that have physical meaning, but your model does not
reflect the physics of the data, the resulting coefficients are useless. In this
case, understanding what your data represents and how it was measured is
just as important as evaluating the goodness of fit.

Residual Analysis. The residuals from a fitted model are defined as the
differences between the response data and the fit to the response data at
each predictor value.

residual = data - fit

You display the residuals in the Curve Fitting Tool by selecting the menu
item View > Residuals.

Mathematically, the residual for a specific predictor value is the difference
between the response value y and the predicted response value Y.

r=y-j

Assuming the model you fit to the data is correct, the residuals approximate
the random errors. Therefore, if the residuals appear to behave randomly, it
suggests that the model fits the data well. However, if the residuals display

a systematic pattern, it is a clear sign that the model fits the data poorly.
Always bear in mind that many results of model fitting, such as confidence
bounds, will be invalid should the model be grossly inappropriate for the data.

Fitting Data

A graphical display of the residuals for a first degree polynomial fit is shown

below. The top plot shows that the residuals are calculated as the vertical

distance from the data point to the fitted curve. The bottom plot displays the

residuals relative to the fit, which is the zero line.

12 J Data
---+ Linsar Fit

o

a8k

3
2tk
q
o]

NoA AN AT
NNV R

a 1 2 3 4

The residuals appear randomly scattered around zero indicating that the

model describes the data well.

10

11

2-73

2 Interactive Curve Fitting

2-74

A graphical display of the residuals for a second-degree polynomial fit is
shown below. The model includes only the quadratic term, and does not
include a linear or constant term.

12H o Dam L i
-+ Cuadatic Fit
10F T(L .
R

Bl

6

2_ Tm?T@?]

Q 1

T T T T T T T T
3 -
2F -
1 A]
0 \E/
1k 4
-2 —
_3— -
| 1 1 1 1 1 | 1 | 1
Q 1 2 3 4 5 & 7 B] 10 1

The residuals are systematically positive for much of the data range indicating
that this model is a poor fit for the data.

Goodness-of-Fit Statistics. After using graphical methods to evaluate the
goodness of fit, you should examine the goodness-of-fit statistics. The Curve
Fitting Toolbox supports these goodness-of-fit statistics for parametric models:
® The sum of squares due to error (SSE)

* R-square

® Adjusted R-square

® Root mean squared error (RMSE)

Fitting Data

For the current fit, these statistics are displayed in the Results list box in the
Fit Editor. For all fits in the current curve-fitting session, you can compare
the goodness-of-fit statistics in the Table of fits.

Sum of Squares Due to Error

This statistic measures the total deviation of the response values from the
fit to the response values. It is also called the summed square of residuals
and is usually labeled as SSE.

n
.2
SSE =) w;(3;-5;)
i=1

A value closer to 0 indicates that the model has a smaller random error
component, and that the fit will be more useful for prediction. Note that the
SSE was previously defined in “The Least Squares Fitting Method” on page
2-49.

R-Square

This statistic measures how successful the fit is in explaining the variation of
the data. Put another way, R-square is the square of the correlation between
the response values and the predicted response values. It is also called the
square of the multiple correlation coefficient and the coefficient of multiple

determination.

R-square is defined as the ratio of the sum of squares of the regression (SSR)
and the total sum of squares (SST). SSR is defined as

n
. _.2
SSR = Y w;(§;-5)
i=1

SST is also called the sum of squares about the mean, and is defined as

2-75

2 Interactive Curve Fitting

2-76

n
.2
SST = Y wi(y;-¥)
i=1

where SST = SSR + SSE. Given these definitions, R-square is expressed as

Rsquare = 528 _ 1 SSE

SST SST

R-square can take on any value between 0 and 1, with a value closer to 1
indicating that a greater proportion of variance is accounted for by the model.
For example, an R-square value of 0.8234 means that the fit explains 82.34%
of the total variation in the data about the average.

If you increase the number of fitted coefficients in your model, R-square will
increase although the fit may not improve in a practical sense. To avoid this
situation, you should use the degrees of freedom adjusted R-square statistic
described below.

Note that it is possible to get a negative R-square for equations that do not
contain a constant term. Because R-square is defined as the proportion of
variance explained by the fit, if the fit is actually worse than just fitting a
horizontal line then R-square is negative. In this case, R-square cannot be
interpreted as the square of a correlation. Such situations indicate that a
constant term should be added to the model.

Degrees of Freedom Adjusted R-Square

This statistic uses the R-square statistic defined above, and adjusts it based
on the residual degrees of freedom. The residual degrees of freedom is defined
as the number of response values n minus the number of fitted coefficients m
estimated from the response values.

v =Hn-m
v indicates the number of independent pieces of information involving the

n data points that are required to calculate the sum of squares. Note that
if parameters are bounded and one or more of the estimates are at their

Fitting Data

bounds, then those estimates are regarded as fixed. The degrees of freedom is
increased by the number of such parameters.

The adjusted R-square statistic is generally the best indicator of the fit quality
when you compare two models that are nested — that is, a series of models
each of which adds additional coefficients to the previous model.

SSE(n—1)

adjusted Rsquare = 1- SST®)

The adjusted R-square statistic can take on any value less than or equal to
1, with a value closer to 1 indicating a better fit. Negative values can occur
when the model contains terms that do not help to predict the response.
Root Mean Squared Error

This statistic is also known as the fit standard error and the standard error

of the regression. It is an estimate of the standard deviation of the random
component in the data, and is defined as

REMSE = s = yMSE

where MSE is the mean square error or the residual mean square

MSE =

u

Just as with SSE, an MSE value closer to 0 indicates a fit that is more useful
for prediction.

Confidence and Prediction Bounds. With the Curve Fitting Toolbox, you
can calculate confidence bounds for the fitted coefficients, and prediction
bounds for new observations or for the fitted function. Additionally, for
prediction bounds, you can calculate simultaneous bounds, which take into
account all predictor values, or you can calculate nonsimultaneous bounds,
which take into account only individual predictor values. The coefficient
confidence bounds are presented numerically, while the prediction bounds are
displayed graphically and are also available numerically.

2-77

2 Interactive Curve Fitting

2-78

The available confidence and prediction bounds are summarized below.

Types of Confidence and Prediction Bounds

Interval Type Description

Fitted coefficients Confidence bounds for the fitted coefficients

New observation Prediction bounds for a new observation (response
value)

New function Prediction bounds for a new function value

Note Prediction bounds are also often described as confidence bounds because
you are calculating a confidence interval for a predicted response.

Confidence and prediction bounds define the lower and upper values of the
associated interval, and define the width of the interval. The width of the
interval indicates how uncertain you are about the fitted coefficients, the
predicted observation, or the predicted fit. For example, a very wide interval
for the fitted coefficients can indicate that you should use more data when
fitting before you can say anything very definite about the coefficients.

The bounds are defined with a level of certainty that you specify. The level of
certainty is often 95%, but it can be any value such as 90%, 99%, 99.9%, and
so on. For example, you might want to take a 5% chance of being incorrect
about predicting a new observation. Therefore, you would calculate a 95%
prediction interval. This interval indicates that you have a 95% chance

that the new observation is actually contained within the lower and upper
prediction bounds.

Calculating and Displaying Confidence Bounds

The confidence bounds for fitted coefficients are given by

C = b+tfS

Fitting Data

where b are the coefficients produced by the fit, ¢ depends on the confidence
level, and is computed using the inverse of Student’s t cumulative distribution
function, and S is a vector of the diagonal elements from the estimated
covariance matrix of the coefficient estimates, (X"X)1s2. In a linear fit, X is
the design matrix, while for a nonlinear fit X is the Jacobian of the fitted
values with respect to the coefficients. X' is the transpose of X, and s? is the
mean squared error.

Refer to the tinv function, included with the Statistics Toolbox, for a
description of ¢. Refer to “Linear Least Squares” on page 2-50 for more
information about X and XT.

The confidence bounds are displayed in the Results list box in the Fit Editor
using the following format.

pl = 1.275 (1.113, 1.437)

The fitted value for the coefficient p1 is 1.275, the lower bound is 1.113,

the upper bound is 1.437, and the interval width is 0.324. By default, the
confidence level for the bounds is 95%. You can change this level to any value
with the View > Confidence Level menu item in the Curve Fitting Tool.

You can calculate confidence intervals at the command line with the confint
function.

Calculating and Displaying Prediction Bounds

As mentioned previously, you can calculate prediction bounds for a new
observation or for the fitted curve. In both cases, the prediction is based on
an existing fit to the data. Additionally, the bounds can be simultaneous

and measure the confidence for all predictor values, or they can be
nonsimultaneous and measure the confidence only for a single predetermined
predictor value. If you are predicting a new observation, nonsimultaneous
bounds measure the confidence that the new observation lies within the
interval given a single predictor value. Simultaneous bounds measure the
confidence that a new observation lies within the interval regardless of the
predictor value.

2-79

2 Interactive Curve Fitting

2-80

The nonsimultaneous prediction bounds for a new observation at the predictor
value x are given by

P,,=3% M'az +xSx'

where s? is the mean squared error, ¢t depends on the confidence level, and is
computed using the inverse of Student’s ¢ cumulative distribution function,
and S is the covariance matrix of the coefficient estimates, (XTX)'s?. Note
that x is defined as a row vector of the design matrix or Jacobian evaluated at
a specified predictor value.

The simultaneous prediction bounds for a new observation and for all
predictor values are given by

P,, = §+fds"+xSx

where f depends on the confidence level, and is computed using the inverse of
the F cumulative distribution function. Refer to the finv function, included
with the Statistics Toolbox, for a description of f.

The nonsimultaneous prediction bounds for the function at a single predictor
value x are given by

Pn,f = v+t fxSx’

The simultaneous prediction bounds for the function and for all predictor
values are given by

Fs,f = y+ffxSx

You can graphically display prediction bounds two ways: using the Curve
Fitting Tool or using the Analysis GUI. With the Curve Fitting Tool, you
can display nonsimultaneous prediction bounds for new observations with
View > Prediction Bounds. By default, the confidence level for the bounds
is 95%. You can change this level to any value with View > Confidence
Level. With the Analysis GUI, you can display nonsimultaneous prediction

Fitting Data

bounds for the function or for new observations. Additionally, you can view
prediction bounds in the Results box of the Analysis GUI.

You can display numerical prediction bounds of any type at the command line
with the predint function.

To understand the quantities associated with each type of prediction interval,
recall that the data, fit, and residuals are related through the formula

data = fit + residuals
where the fit and residuals terms are estimates of terms in the formula
data = model + random error

Suppose you plan to take a new observation at the predictor value x

the new observation y, ,,(x,,;) and the associated error e
satisfies the equation

.1 Call
Then Yn+1 (xn+1)

n+l n+l*

Y +1(In+ 1) = f(xn+ 1]+ €n+1l
where f(x_,,) is the true but unknown function you want to estimate at x__;.
The likely values for the new observation or for the estimated function are

provided by the nonsimultaneous prediction bounds.

If instead you want the likely value of the new observation to be associated
with any predictor value, the previous equation becomes

Yn+1(X) = flx)+e

The likely values for this new observation or for the estimated function are
provided by the simultaneous prediction bounds.

The types of prediction bounds are summarized below.

2-81

2 Interactive Curve Fitting

2-82

Types of Prediction Bounds

Type of Bound

Associated Equation

Observation Nonsimultaneous Yorp (X047
Simultaneous Y1), globally for any
x
Function Nonsimultaneous flx,.1)
Simultaneous flx), simultaneously for

all x

The nonsimultaneous and simultaneous prediction bounds for a new
observation and the fitted function are shown below. Each graph contains
three curves: the fit, the lower confidence bounds, and the upper confidence
bounds. The fit is a single-term exponential to generated data and the
bounds reflect a 95% confidence level. Note that the intervals associated
with a new observation are wider than the fitted function intervals because
of the additional uncertainty in predicting a new response value (the fit plus

random errors).

Fitting Data

Monsimulta necus bounds for function

Monsimuttansous bounds for observation

25 25
» cdata + data
5 fitted curve 2 fitted cune
-— - prediction bounds ' - —- prediction bounds
15
o~
i
05
4]
a
x x
Simuttaneous bounds for function Simultanecus bounds for obsenvation
25 25
- data - data
— fitted curve 2 — fitted curve
2 -— . prediction bounds . . — - prediction bounds
15
-
i
Q5
0
4]

Example: Goodness of Fit. This example fits several polynomial models
to generated data and evaluates how well those models fit the data and how
precisely they can predict. The data is generated from a cubic curve, and
there is a large gap in the range of the x variable where no data exist.

rand('state',0)

X = [1:0.1:3 9:0.1:10]"';
c [2.5 -0.5 1.3 -0.1];
y

c(1) + c(2)*x + ¢c(3)*x."2 + c(4)*x.”3 + (rand(size(x))-0.5);

2-83

Interactive Curve Fitting

2-84

After you import the data, fit it using a cubic polynomial and a fifth degree
polynomial. The data, fits, and residuals are shown below. You display the
residuals in the Curve Fitting Tool with the View > Residuals menu item.

-} Curve Fitting Tool
File | view Tools ‘Window

Prediction Bounds
Confidence Level

&

Residuals

Clear Plot

Help

=10l x|

Mone

clude. .. | Flatting...
Scatker Plok
Lata and Fits

Analysis... |

30

-
s
-
.
-~

Both fits appear fo
model the data well.

The residuals for both
—— fits appear to be
randomly distributed.

Both models appear to fit the data well, and the residuals appear to be
randomly distributed around zero. Therefore, a graphical evaluation of the
fits does not reveal any obvious differences between the two equations.

Fitting Data

The numerical fit results are shown below.

Results

Linear model Poly3: = The cubic fit coefficients are
£ixX] = Pl¥x*3 + P2'X 2 + pP3*X + p4d
Coefficients (with 95% confidence hounds): uccuruieh(known.

pl = -0.09837 (-0.1095, -0.08729)
pZ = 1.275 (1.113, 1.437)
Results
p3 = -0.4351 (-1.092, 0.2222)
pd = 2.56 (1.787, 3.332) Linear model Poly5: -

fix) = pl*x*5 4+ pZ*xtd + p3¥x*3 4+ pdPut2 + pStu
Coefficients (with 95% confidence bounds):

pl = 0.001380 (-0.003589, 0.006357)
The quintic fit coefficients p2 = -0.03441 (-0.1601, 0.09125)
are not accwrately known B3 g.1934 (03130, LS
g pd = 0.2733 (-3.856, 4.402)
ps5 = 1.013 (-5.785, 7.511)
pe = 1.8335 (-2

1687, 5.837) -
4| | »

As expected, the fit results for poly3 are reasonable because the generated
data follows a cubic curve. The 95% confidence bounds on the fitted coefficients
indicate that they are acceptably precise. However, the 95% confidence
bounds for poly5 indicate that the fitted coefficients are not known precisely.

The goodness-of-fit statistics are shown below. By default, the adjusted
R-square and RMSE statistics are not displayed in the Table of Fits. To
display these statistics, open the Table Options GUI by clicking the Table
options button. The statistics do not reveal a substantial difference between
the two equations.

Table of Fits

‘Name | Data set | Tipe | SEE |R—square| Adi R-s1 | RMSE |
268651 |0.99933 |0.93925 0.30383

Checkto view column n Table of Fis The statistics do not reveal a substantial
¥ e I ore difference between the two equations.

¥ Dtz set 7 g R-sq
o el Open the Table Options GUI
i vhe | and select Adj R-sq and RMSE.

[ssE ¥ # Coeif
¥ Re-squars

The 95% nonsimultaneous prediction bounds for new observations are
shown below. To display prediction bounds in the Curve Fitting Tool, select
the View > Prediction Bounds menu item. Alternatively, you can view

2-85

2 Interactive Curve Fitting

prediction bounds for the function or for new observations using the Analysis

GUL

-} Curve Fitting Tool

File | view Tools Window Help
JJ v Prediction Bounds

Confidence Level »

Residuals
Clear Plat

3

=10l

Fitting... | Exclude...

Flotting... Analyziz... |

Data and Fits

O oyvs x

— poly3
Pred bnds (poly3)

=== poly5s

Pred bnds {poly5)

g

9 10

—— poly3
— - poly5 ||

The prediction bounds for poly3 indicate that new observations can be
predicted with a small uncertainty throughout the entire data range. This is
not the case for poly5. It has wider prediction bounds in the area where no
data exist, apparently because the data does not contain enough information
to estimate the higher degree polynomial terms accurately. In other words, a
fifth-degree polynomial overfits the data. You can confirm this by using the
Analysis GUI to compute bounds for the functions themselves.

The 95% prediction bounds for the fitted function using poly5 are shown

below. As you can see, the uncertainty in predicting the function is large in
the center of the data. Therefore, you would conclude that more data must

2-86

Fitting Data

be collected before you can make precise predictions using a fifth-degree

polynomial.

<) Analysis

Fitto analyze:
Analyze atXi=[1:09:10

palys &y vs. x) 'l

[v! Evaluate fit at ¥
Frediction bounds:
" None
& Forfunction
© For new ohseration

Level | 95 %

=10l

[15t derivative at ¥i
[2nd derivative atXi

[Integrate to Xi
& Start fram ming<i

 Startfrom I

V! Plot results
¥ Plot data set yvs x

In conclusion, you should examine all available goodness-of-fit measures

- o x{|
Hi | T4 j[E40] upper fixi
1 2.85085 3.28175 3.71256
1.9 5.44536 5.65871 5.87207
2.8 8.92368 9.1831 9.44374
37 126762 13.634 14.5918
4.6 16.3488 18.58541 20.75945
5.5 -} Curve Fitting Analysis
S; File Edit View Insert Tools ‘Window Help
iz DSH&S NAA/ | BPD
9110 Analysis of fit "polya” for dataset "y vs. x"
35 T . T T
—— poly5))
30 ¢ | ---- 95% prediction bounds
%Y VE X
= 25f
=
=
o
=
= 20t
=
&=
& 15t
=
=
= 101
5 L
D 1 1 1 1
a 2 4 g g

before deciding on the fit that is best for your purposes. A graphical
examination of the fit and residuals should always be your initial approach.
However, some fit characteristics are revealed only through numerical fit
results, statistics, and prediction bounds.

Example: Rational Fit

This example fits measured data using a rational model. The data describes
the coefficient of thermal expansion for copper as a function of temperature

in degrees kelvin.

2-87

2 Interactive Curve Fitting

2-88

To get started, load the thermal expansion data from the file hahn1.mat,
which is provided with the toolbox.

load hahnit
The workspace now contains two new variables, temp and thermex:

® temp is a vector of temperatures in degrees kelvin.

® thermex is a vector of thermal expansion coefficients for copper.

Import these two variables into the Curve Fitting Tool and name the data set
CuThermEx.

For this data set, you will find the rational equation that produces the best fit.

As described in “Library Models” on page 2-59, rational models are defined as
a ratio of polynomials

“1
_ pix +pgx T+t D, 1

y

n n
X +gqx +...+4q,,

where n is the degree of the numerator polynomial and m is the degree of the
denominator polynomial. Note that the rational equations are not associated
with physical parameters of the data. Instead, they provide a simple and

flexible empirical model that you can use for interpolation and extrapolation.

Fitting Data

As you can see by examining the shape of the data, a reasonable initial choice
for the rational model is quadratic/quadratic. The Fitting GUI configured for
this equation is shown below.

-)riing -lol |

Fit Editor

ey fit | Copy fit |

FitName: |Rat22

Dataset |CuThermEx | Exclusion rule: [inone) -
Type offit. [Rational | [Center and scale % data
Rational

Mumerator Denominator

canstant linear polynomial

Begin the fitting process with a
quadratic/quadratic rational fit.

cubic palynomial

Fit options... | [~ Immediate apply Cancel | Anply: |

Results

General model RatZa: =
f£ix) = (pl¥x*Z + p2*x + p3) / (¥*2 + gl¥*x + g2)
Coefficients (with 95% confidence bhounds):

pl = 21.21 (2l.01, 21.42)
pz = -876.5 (-9248.8, -604.Z) -
p3 = 9147 (7620, 1.067e+004)

gl = 23.55 (18.8, 28.3)

g2 = 756.5 (233.4, 1280) -

Data set
CuThermEx |Rational

Delete fit Save towarkspace... | Table options... |

Close |

2-89

2 Interactive Curve Fitting

The data, fit, and residuals are shown below.

Fin eew Toi Ve e

a4aan Ea
Duta and Fits
0 . . _’T‘""_WE'F'
15
The fit clearly misses
B / 1 some of the data.

Log b g 1 The residuals show a strong pattern
" i ¥ ~ indicating a better fit is possible.

The fit clearly misses the data for the smallest and largest predictor values.
Additionally, the residuals show a strong pattern throughout the entire data
set indicating that a better fit is possible.

2-90

Fitting Data

For the next fit, try a cubic/cubic equation
shown below.

-} Curve Fitting Tool

File W“iew Tools “Window Help

. The data, fit, and residuals are

=0l x|

|&| ® 2k |2

Data... | Fitting...

Exclude... | Flotting... | Analysis..

Data and Fits

The fit exhibits several
—— discontinuities around the
zeros of the denominator.

0 <
14+ CuThermEx
Rai33
10 B
5 4
D 1 1 1 1 1 1 1 1]
100 200 300 400 500 B00 YOO 800
Residuals
15 T T T T T T T T
1 L -
L]
a5t a':*g,. 4 E
0 t B e
ke . 3 1
i AT >
Qe ‘2/ W:a..n"' X |
| | | | | | | |
100 200 300 400 500 00 YOO 800

The numerical results shown below indicate that the fit did not converge.

Results

Fit computation did not converge:

Maximum number of iterations exceeded. Increasing MaxIter
(in fit options) may allow for a better fit, or the current
equation may not he a good model for the data.

Fit found when optimization terminated:

General model Rat33:
£ix) (p1*x*3 + p2*x*2 + p3*x + pd) J
(%43 + gl*®*2 + g2%% + g3)
Coefficients (with 95% confidence bounds):

pl = 21.2 {20.85, 21.55)

p2 = -888.8 (-2168, 390.4) =
p3 = 1.069e+004 (-3.784e+004, 5.922e+004)

pd = -3.353e+004 (-4.694e+005, 4.023e+005)

ql = 20.82 (-31.13, 72.77)

qz = 1428 (-1804, 4659)

g3 = -2.545:+004 (-5.456e+004, -2337)

The fit did not converge, which

—— indicates that the model might

be a poor choice for the data.

2-91

2 Interactive Curve Fitting

Although the message in the Results window indicates that you might
improve the fit if you increase the maximum number of iterations, a better
choice at this stage of the fitting process is to use a different rational equation
because the current fit contains several discontinuities. These discontinuities
are due to the function blowing up at predictor values that correspond to

the zeros of the denominator.

As the next try, fit the data using a cubic/quadratic equation. The data, fit,
and residuals are shown below.

.} Curve Fitting Tool =lolx|
File View Tools Window Help
P
Data... | Fitting... | Exclude... Flotting... Analyziz... |
Data and Fits
af ' '
1aF + CuThermEx H
— Rat32 The fit is well behaved
- iy over the entire data range.
5 L -
] 1 1 1 1 1 1 1 1 .
100 200 300 400 500 G000 700 500
Residuals
0.4 T T T T T T T T
. .
o2t ,° .. L .
. 3 PN ¥ The residuals are
Bt e gy ate et
AL I S LR SO SRR H —— randomly scattered
O et o 5 20l + . 0’0“8‘" 9\ - " A randomiy scafiere
LA AL S about zero.
o2k " L - i H |
_D‘.l 1 : 1 1 1 1 1 1 1
100 200 300 400 500 G000 700 500

The fit is well behaved over the entire data range, and the residuals are
randomly scattered about zero. Therefore, you can confidently use this fit
for further analysis.

2-92

Fitting Data

Fitting Custom Models

You can define your own equations with the Create Custom Equation GUI.
You open this GUI one of two ways:

¢ From the Curve Fitting Tool, select Tools > Custom Equation.

¢ From the Fitting GUI, select Custom Equations from the Type of fit list,
then click the New Equation button.

The Create Custom Equation GUI contains two panes: one for creating linear
custom equations and one for creating general (nonlinear) custom equations.
These panes are described in the following examples.

Example: Linear Model (Legendre Polynomial). This example fits data
using several custom linear equations. The data is generated, and is based
on the nuclear reaction 2C(e,e’0)®Be. The equations use sums of Legendre
polynomial terms.

Consider an experiment in which 124 MeV electrons are scattered from 2C
nuclei. In the subsequent reaction, alpha particles are emitted and produce
the residual nuclei ®Be. By analyzing the number of alpha particles emitted as
a function of angle, you can deduce certain information regarding the nuclear
dynamics of 12C. The reaction kinematics are shown below.

g is the incident eleciron.
1255 the corbon torget.

 is the momentum transferred to *Be.
e" is the scottered electron,
ce isthe emitted nlphuo paorticle.

_ B, is the electron scottering ongle.

B is the ulpho seottering ongle.

The data is collected by placing solid state detectors at values of ® ranging
from 10° to 240° in 10° increments.

2-93

2 Interactive Curve Fitting

2-94

It is sometimes useful to describe a variable expressed as a function of angle
in terms of Legendre polynomials

y(x) = Y a,P (x)
n=1>0

where P (x) is a Legendre polynomial of degree n, x is cos(©), and a, are the
coefficients of the fit. Refer to the 1egendre function for information about
generating Legendre polynomials.

For the alpha-emission data, you can directly associate the coefficients with
the nuclear dynamics by invoking a theoretical model, which is described in
[8]. Additionally, the theoretical model introduces constraints for the infinite
sum shown above. In particular, by considering the angular momentum of
the reaction, a fourth-degree Legendre polynomial using only even terms
should describe the data effectively.

You can generate Legendre polynomials with Rodrigues’ formula:
1 7dy* 2 n
P, = o—(5) «* - 1)

2" n! -:f_x_

The Legendre polynomials up to fourth degree are given below.

Legendre Polynomials up to Fourth Degree

P.(x)

1

X

(1/2)(3x*- 1)

(1/2)(5x3 — 3x)

B lWw N =IO |3

(1/8)(35x* — 30x2 + 3)

The first step is to load the 2C alpha-emission data from the file
carboni2alpha.mat, which is provided with the toolbox.

Fitting Data

load carboni2alpha

The workspace now contains two new variables, angle and counts:

® angle is a vector of angles (in radians) ranging from 10° to 240° in 10°

increments.

e counts is a vector of raw alpha particle counts that correspond to the

emission angles in angle.

Import these two variables into the Curve Fitting Toolbox and name the data

set C12Alpha.

The Fit Editor for a custom equation fit type is shown below.

=101 |

<) Fitting
Fit Editor
e fit | Copy fit |
. . . Fit Mame: |Leg4E\ren
Specify a meaningful it name,
! Dataset |C1Zalpha
the data set, and the type of fit.
Type of fit: |Cust0m Equations

Exclusion rule: |{nane) -

x| [Center and scale ¥ data

~Custam Egquation

Open the Create Custom

FPress "Mew Equation” to create a custom eguation.

Equations GUI.

Mew equation...
Copy equation

Delete equation

Results

Fit options... | Efimmediate apply Cancel | Apply |

Fit the data using a fourth-degree Legendre polynomial with only even terms:

yilx) = apg+ ag[%)(ﬂxz -1)+ aé[é]{ﬂﬁxé —Sﬂxz +3)

2-95

2 Interactive Curve Fitting

2-96

Because the Legendre polynomials depend only on the predictor variable

and constants, you use the Linear Equations pane on the Create Custom
Equation GUI. This pane is shown below for the model given by y,(x). Note
that because angle is given in radians, the argument of the Legendre terms is

given by cos(©).

<} Create Custom Equation ;Iglil

Linear Equations | General Equations |

Independent variahle: E

~Equation
Unknown |
Coefficients Termns
b = fa2 # iz eosiea-1)) (reafe a custom linear equation
+ o ([7EF (35 cos 60 e 30 cos 602+)) using even Legendre terms up

to fourth degree.

+ IaD
v Unknown caonstant coefficient Add aterm I Femove last term

Equation: A2 I 00 2-10+ad* (178" (35 cos (0™ -30% cos (g 2+ 3 +al

-

Specify a meaningful
Equation name: |Leg4Even N pe fy ng
equation name.

Ok | Cancel | Help |

Fitting Data

The fit and residuals are shown below. The fit appears to follow the trend of
the data well, while the residuals appear to be randomly distributed and do

not exhibit any systematic behavior.

<)} Curve Fitting Tool
File “iewy Toolz ‘Whdow Help

IS[=] B

2 & & H

Data... |

Exclude... | Plotting. .. |

Analysis. |

Data and Fits

+ GCizalpha
LegdEven

The numerical fit results are shown below. The 95% confidence bounds
indicate that the coefficients associated with P (x) and P,(x) are known fairly
accurately, but that the P,(x) coefficient has a relatively large uncertainty.

Results

Linear model: 1=
fix) = a2%(1/2)%(3%coa(x) 2-1) + adt (1/8)%
Coefficients (with 95% confidence bounds):
az 23,86 [4.436, 43.29)
ad 201.9 [(180.2, Z23.6)
af 102.9 (93.21, 112.5)

Goodness of fit:
S3E: 7968
R-square: 0.9665
Adjusted R-sguare: 0.9637 —

FMSE: 19.48 =
1| | _’I_I

The coefficients associated with Py(x) and
P4x)are known accurately, butthe Po(x)
coefficient has a karger uncertainty.

2-97

2 Interactive Curve Fitting

2-98

To confirm the theoretical argument that the alpha-emission data is best
described by a fourth-degree Legendre polynomial with only even terms, fit
the data using both even and odd terms:

Volx) = y(x)+aqx+ aa[%j(ﬁxa —3x)

The Linear Equations pane of the Create Custom Equation GUI is shown

below for the model given by y,(x).

~) Create Custom Equation =101 x|
unearEquaﬁnnsl GeneraIEquaﬁonsl
Independentuariable: f
Equation
LumnLEe e &)
I = 2 * sz (3costin2- 1))
+ [ae *¢ fit/27(357e05.60"4-30%c0560"2+3)) (reale a custom linear equation
+ [t +{ feostn) J using even and odd Legendre
- (12 5vr0s 6a-Trust)) terms up fo fourth degree.
N — | -
v Unknown constant coefficient ’W Remove last term | (|l(|(Add o term fo ndd the O‘H
Legendre terms.
Equation BZHIZP (IR C0S (0P 2-1 1)+ ad (1 B) 35 Cos (M- 30705 (9" 2+ T))+a1 .. . inahul
Equation name: |Leg4EvenOdd _ :z::llf?;: :Len::mg v
QK | Cancel | Help |

The numerical results indicate that the odd Legendre terms do not contribute
significantly to the fit, and the even Legendre terms are essentially unchanged
from the previous fit. This confirms that the initial model choice is the best

one.

Resulis
Linear model: =
£ix) = azZ*(L/2)*(3%cos(x)"2-1] + ad*il/a)*
Coefficients (with 95% confidence bounds):
a2 24.19 (3.291, 45.1)

ad = 201.5 (177.6, 225.5)
al = 1.837 (-12.89, l6.56)
a3 = -1.21 (-22.52, 20.1)
a0 = 103.1 (92.71, L13.6)

Goodness of £it:
S8E: 7940
R-scuare: 0,9669
Adjusted R-zgquare: 0.98
RMSE: 20.44

4

Fle |

The odd Legendre coefficients ore likely
condidutes for removol to simplify the fit
becouse their values are small and their
confidence bounds contuin zero.

Fitting Data

Example: Custom Model (Fourier Series). This example fits the ENSO
data using several custom nonlinear equations. The ENSO data consists of
monthly averaged atmospheric pressure differences between Easter Island
and Darwin, Australia. This difference drives the trade winds in the southern
hemisphere.

As shown in “Example: Smoothing Data” on page 2-22, the ENSO data is
clearly periodic, which suggests it can be described by a Fourier series

(=]
X . X
y(x) = ap+ Z @, cos (2:-1:;] + bism(ﬂﬂ:;]
_ i i
I =
where a, and b, are the amplitudes, and c, are the periods (cycles) of the data.
The question to be answered in this example is how many cycles exist? As
a first attempt, assume a single cycle and fit the data using one sine term
and one cosine term.

x . x
y1lx) = ag +a1ms(2nc—1) +by sm[?nc—l)

If the fit does not describe the data well, add additional sine and cosine terms
with unique period coefficients until a good fit is obtained.

Because there is an unknown coefficient ¢, included as part of the
trigonometric function arguments, the equation is nonlinear. Therefore, you
must specify the equation using the General Equations pane of the Create
Custom Equation GUI.

2-99

2 Interactive Curve Fitting

2-100

This pane is shown below for the equation given by y,(x).

<} Create Custom Equation =1oi=|
Linear Equations General Equations |
Independent variatle: F{
Equation: [y = [aovat cos @ pinuc b1 *sinz pic) — Begin with a single cycle.
Unknowns | StartPaint Lawer Upper . o
- i By default, the coefficients are
al 0.961 Inf In
al 0.852 I Inf unbounded and have random
o1 0.368 mll In slarfing values between O and 1.
¢ 0.547 I Inf
Specify a meaningful
Equation name: IEnsm Period pe l:y L
equafion nome.
OK | Cancel | Help |

Note that the toolbox includes the Fourier series as a nonlinear library
equation. However, the library equation does not meet the needs of this
example because its terms are defined as fixed multiples of the fundamental
frequency w. Refer to “Fourier Series” on page 2-60 for more information.

The numerical results shown below indicate that the fit does not describe the
data well. In particular, the fitted value for c1 is unreasonably small. Because
the starting points are randomly selected, your initial fit results might differ
from the results shown here.

Results

General model:

fix) = al+al*cos(2¥pi*x/el)+bl¥zin(2%pi*nscl)
Coefficients (with 95% confidence bounds):

an 10.64 (10.12, 11.17)

al -0.06473 (-1.54&, 1.418)

bl 0.3578 (-0.4135, 1.129)

cl 0.6402 (0.6374, 0.643)

|»

Goodness of fit:
SHE: 1952
R-square: 0.005835
Adjusted R-square: -0.01249 =
RM3E: 3.45 j

As you saw in “Example: Smoothing Data” on page 2-22, the data include

a periodic component with a period of about 12 months. However, with c1
unconstrained and with a random starting point, this fit failed to find that
cycle. To assist the fitting procedure, constrain c1 to a value between 10 and

Fitting Data

14. To define constraints for unknown coefficients, use the Fit Options GUI,
which you open by clicking the Fit options button in the Fitting GUI.

<) Fit Options for custom: Ensol ' ﬂ
Method: MonlinearLeastSquares
Robust: jor =l
Algarithm: |Trust—Regi0n LI
DifMinChange: | 1.0E-8
DiffaxChange: | 0.1
MaxFunEvals: | 600
Maxlter: | 400
TalFun: | 1.0E-6
Tal: | 1.0E-6
Unknowns| StartPoint| Lower Upper
al 5.000 -Inf| Inf|
al 0.3145 -Inf| Inf|
b1 0.700 -Inf| Inf|
cl 0.642 10.000 14.000

Help |

___ (onstrain the cycle to be
between 10 and 14 months,

2-101

2 Interactive Curve Fitting

The fit, residuals, and numerical results are shown below.

) Curve Fitting Tool =10l]
File View Tools Window Help
|&|® 2|2
Data... | Fitting... | Exclude... Flotting... Analyzis... |
Data and Fits
* + enso
Lin . o | — EnzolPeriod ;
1 \/\-)/ \j] L The fit for one cycle.
* Vool ¢
5L - .' . . 5 s, *e |
D C 1 1 1 1 1 1 hd 1 1 b
o] 20 40 B0 80 100 120 140 160
Residuals
10 T T T T T T T
.|+ EnsolPeriod
st
ST s R R The residuaks indicate that at
0 —...: : ..0 » o, e . .' oL ..:... o W L |e|:|51 one more CYCIE exists.
UL e e T S L.
N wt . - .°
Results
_1D [l 1 1 1 1 1 . -
o0 40 50 a0 100 General model:
fix) = al+al*cos(Z*pi*xscl)+bl*sin(Z*%pi*x/cl)

Coefficients (with 95% confidence bounds):

a0 = 10.63 (10.22, 11.03)
al = 2,876 (2.187, 3.565)
The numerical results bl = 1.176 (0.09147, Z2.261)
_— cl =

indicate a 12 month cycle. 124 (.85, 12.05) I~

The fit appears to be reasonable for some of the data points but clearly does
not describe the entire data set very well. As predicted, the numerical results
indicate a cycle of approximately 12 months. However, the residuals show a
systematic periodic distribution indicating that there are additional cycles
that you should include in the fit equation. Therefore, as a second attempt,
add an additional sine and cosine term to y,(x)

x . x
Volx) = ¥q(x)+ agcos[Enc—z)+ bzsm[ﬂnc—z)

2-102

Fitting Data

and constrain the upper and lower bounds of ¢, to be roughly twice the bounds

used for c;.

The fit, residuals, and numerical results are shown below.

-} Curve Fitting Tool

File View Tools Window Help

=10l =]

g ® 2|12k

Data... | Fitting... | Exclude... Flotting... Analyziz... |
Data and Fits
* . + o [+ enso
18- . . s ot ., | — Ensc2Periad [|
. S, Ry ._U\
10F 17 b d . RS 1 .
tif. . A . L The fit for two cycles.
- - .. - -
5 hd . . .o « % s 4
D C 1 1 1 1 1 1 hd 1 1 b
o] 20 40 B0 80 100 120 140 160
Residuals
10 T T T T T T T T
+ Enso2Period
#
5 * N c o 1 . T
. . PR S S e The residuals indicate that
R [N B . .
. LI I .t ot ._ i
O e oot T e MRS one more cycle might exist
Al » . .s ..o. .) R o. . ..I. ., |
: 4+
Results
_10 [l 1 1 1 1 1
20 40 B0 80 100 | |General model: -

The numerical resulis indicate

Eix) =
al = 10. 59
al = 2,865
az = -0.8126
bl = 1.282
bz = 0.5006
cl = 11.93
cz = 21,86

an additional 22 month cycle.

al+al*cos(Z%pi*=/cl)+bl¥sin(2%pi*xscl)+
Coefficients (with 95% confidence bhounds):

{10.2, 10.99)
{2.172, 3.557)
{-1.567, -0.05857)
(0,223, 2.341)
{-0.4819, 1.483)
{11.85, 12.02)
{20.95, 22.76)

i of

The fit appears to be reasonable for most of the data points. However, the
residuals indicate that you should include another cycle to the fit equation.
Therefore, as a third attempt, add an additional sine and cosine term to y,(x)

2-103

2 Interactive Curve Fittin

g

2-104

Yalx) = }'g(x}+a3cos[

x
pLy gl
c

Enij

+b sjn(
j 3 cq

3

and constrain the lower bound of ¢, to be roughly three times the value of c,.

The fit, residuals, and numerical results are shown below.

il
File View Tools Window Help
|&l# 2|2 e
Data... | Fitting... | Exclude... | Flotting... | Analyziz... |
Data and Fits
* . + o [+ enso
(2] .. . “»| — Enso3Period [
1 el L AN A 3 .
10 AXE . 1 Q. U VS L The fit for three cycles.
, * . .
5k h . 5 . d
D C 1 1 1 1 1 1 hd 1 1 b
o] 20 40 B0 80 100 120 140 160
Residuals
10 T T T T T T T T
+ Enso3Period .
. The residuals appear
—— fairly random for most
of the data set.

S . Results
General model: 1=
-10L ' L ' ' ’ fix) = al+al*cos(2%pi*xscl)+bl*sin(Z%pi*x/icl)+
0 40 60 80 100 Coefficients (with 25% confidence bounds):
an = 10.52 (10.16, 10.89)
al = 2.804 (2.144, 3.464)
az = -0.7867 (-1.58, 0.006603)
a3 = -1.608 (-2.13, -1.088)
bl = 1.474 (0.5307, 2.418)
b2 = 0.7441 (-0.06543, 1.554) [
b3 = 0.1669 (-0.8447, 1.179)
The numerical results indicate [st- i1.92 (l1.84, 11.33)
cz = 22.04 (21.29, 22.78)
12, 22, and 44 month cycles. L .- 15,56 (41.64, 45.43) _lj
4| | »

Fitting Data

The fit is an improvement over the previous two fits, and appears to account
for most of the cycles present in the ENSO data set. The residuals appear
random for most of the data, although a pattern is still visible indicating that
additional cycles may be present, or you can improve the fitted amplitudes.

In conclusion, Fourier analysis of the data reveals three significant cycles.
The annual cycle is the strongest, but cycles with periods of approximately 44
and 22 months are also present. These cycles correspond to El Nino and the
Southern Oscillation (ENSO).

Example: Custom Model (Gaussian with Exponential Background).
This example fits two poorly resolved Gaussian peaks on a decaying
exponential background using a general (nonlinear) custom model. To get
started, load the data from the file gauss3.mat, which is provided with the
toolbox.

load gauss3
The workspace now contains two new variables, xpeak and ypeak:

® xpeak is a vector of predictor values.

® ypeak is a vector of response values.

Import these two variables into the Curve Fitting Toolbox and accept the
default data set name ypeak vs. xpeak.

You will fit the data with the following equation

_E.u; ;l.b 1]2 _[.1; :E]3

-bx
yix) = ae +aqe +age

where a, are the peak amplitudes, b, are the peak centroids, and c, are related
to the peak widths. Because there are unknown coefficients included as part
of the exponential function arguments, the equation is nonlinear. Therefore,
you must specify the equation using the General Equations pane of the Create
Custom Equation GUI. This pane is shown below for y(x).

2-105

2 Interactive Curve Fitting

<)} Create Custom Equation = |EI|1|
Linear Equations General Equations |
Independent variahle: &
Equation:bf = |a*exp(—b*)<)+a1*exp(—((x—b1)rc1)"2)+32*exp(—((x—bEJIcz)"Ej
Unknowns | StartPoint Lower Upper
a 0167 -Inf] Inf]
al 0.809 -Inf] Inf]
aZ 0.523 -Inf] Inf]
h 0.744 -Inf] Inf]
b1 0105 -Inf] Inf]
h2 0.204 -Inf] Inf]
cl 0173 -Inf] Inf]
) 0.345 -Inf] Inf]

Equation name: IGaussEExm

Ok | Cancel I Help |

Two Gaussian peaks on an
exponential background.

By default, the coefficients are
unbounded and have random
starting values between O and 1.

2-106

Fitting Data

The data, fit, and numerical fit results are shown below. Clearly, the fit is poor.

) curvereng ool =i

File View Tools Window Help
|&| & 2|z

[rata... | Fitting. .. | Exclude... | Flotting... | Analyziz... |

180 + ypeak v xpeak
— GaussZExpl

160
140}
120 1
100 &
80
B0 |
40
20t

Results

Fit computation did not conwverge: =
Maximum number of function evaluations exceeded. Increasing
MaxFunEvals (in fit options) may allow for a better £it, or

the current ecquation may not be a good model for the data.

Fit found when optimization terminated:

General model:

fix) = a*expi-b¥x)4+al%exp(-(ix-bl]/cl)*2]+a2%expi-i (>
Coefficients (with 95% confidence bounds):

a = 495,2 (-Inf, Inf)

al = 0.8086 (-Inf, Inf)

az = -323.8 (-Inf, Inf) 1
b = 0.01304 (-Inf, Inf)

bl = 0.1053 {-Inf, Inf)

bz = -Z.094 (-Inf, Inf)

cl = 0.1733 (-Inf, Inf)

oz = -7z.89 (-Inf, Inf) =
4 | »

Because the starting points are randomly selected, your initial fit results
might differ from the results shown here.

The results include this warning message.

2-107

2 Interactive Curve Fitting

Fit computation did not converge:

Maximum number of function evaluations exceeded. Increasing
MaxFunEvals (in fit options) may allow for a better fit, or
the current equation may not be a good model for the data.

To improve the fit for this example, specify reasonable starting points for
the coefficients. Deducing the starting points is particularly easy for the
current model because the Gaussian coefficients have a straightforward
interpretation and the exponential background is well defined. Additionally,
as the peak amplitudes and widths cannot be negative, constrain a,, a,, c;,
and c, to be greater then zero.

To define starting values and constraints for unknown coefficients, use the
Fit Options GUI, which you open by clicking the Fit options button. The
starting values and constraints are shown below.

< Fit Options for custom: Gauss. 1[
Method: MonlinearLeastSguares
Robust: jort =
Algarithim: |Trust—Regi0n LI
DiftinChange: | 1.0E-8
DifaxChange: | 01
MaxFunEvals: | 600
Maxiter: | 400
TalFun: | 1.0E-6
Tolx: | 1.0E-6
Unknowns| StartPaint Lower Upper
a 100.000 -Inf] Inf]
al 100.000 1] 1f]
al g0.000 1] Inf] . ..
b T 00801 T i Specify reasonable coefficient
b 110.000 -Inf Inf starting values and constraints.
b2 140.000 -Inf] Inf]
cl 20.000 0 Inf]
c2 20.000 1] 1]
o |

2-108

Fitting Data

The data, fit, residuals, and numerical results are shown below.

) Curve Fitting Tool =101 x|
File View Tools Window Help

g ® 2|2k

[rata... | Fitting. .. | Exclude... Flotting... Analyziz... |
140 F T T T T 9
+ ypeak vs. xpeak
120l — Gauss2Expl

L L ! ! Results
0 50 100 150
General model: 1=
fix) = avexpi-b¥x)+al%exp(-((x-bl)/cl)*2]+az¥exp
Coefficients (with 95% confidence bounds):
a = 95,94 (97.9, 99.98)
al = lo0.7 (99.09, 102.3)
az = 73,71 (71.32, 76.09)
b = 0.01085 (0.0107, 0.0111%9)
bl = 11l.6 {l10.9, 112.3)
bz = 147.8 (147, 148.6)
cl = 23.3 (22.58, 24.02)
cz = 192,67 (l8.92, 20.41)

Goodness of firt:
35E: 1244
R-square: 0.9969
Adjusted B-scuare: 0.9968 1

RNSE: 2.268 —
4 | _’I_I

Example: Robust Fitting

This example fits data that is assumed to contain one outlier. The data
consists of the 2000 United States presidential election results for the state of
Florida. The fit model is a first degree polynomial and the fit method is robust
linear least squares with bisquare weights.

2-109

2 Interactive Curve Fitting

2-110

In the 2000 presidential election, many residents of Palm Beach County,
Florida, complained that the design of the election ballot was confusing, which
they claim led them to vote for the Reform candidate Pat Buchanan instead
of the Democratic candidate Al Gore. The so-called “butterfly ballot” was
used only in Palm Beach County and only for the election-day ballots for the
presidential race. As you will see, the number of Buchanan votes for Palm
Beach is far removed from the bulk of data, which suggests that the data
point should be treated as an outlier.

To get started, load the Florida election result data from the file
flvote2k.mat, which is provided with the toolbox.

load flvote2k

The workspace now contains these three new variables:

® buchanan is a vector of votes for the Reform Party candidate Pat Buchanan.
® bush is a vector of votes for the Republican Party candidate George Bush.

® gore is a vector of votes for the Democratic Party candidate Al Gore.

Each variable contains 68 elements, which correspond to the 67 Florida
counties plus the absentee ballots. The names of the counties are given in
the variable counties. From these variables, create two data sets with the
Buchanan votes as the response data: buchanan vs. bush and buchanan
VS. gore.

For this example, assume that the relationship between the response and
predictor data is linear with an offset of zero.

buchanan votes = (bush votes)(m1)
buchanan votes = (gore votes)(m2)

m1 is the number of Bush votes expected for each Buchanan vote, and m2 is
the number of Gore votes expected for each Buchanan vote.

To create a first-degree polynomial equation with zero offset, you must create
a custom linear equation. As described in “Fitting Custom Models” on page
2-93, you can create a custom equation using the Fitting GUI by selecting

Fitting Data

Custom Equations from the Type of fit list, and then clicking the New

Equation button.

The Linear Equations pane of the Create Custom Equation GUI is shown

below.

<} Create Custom Equation

Linear Equations | General Equations |

Independent variahle: |>-<

~Eqguation

Unknown
Coeflicients

T

Terms

= e)

[Unknown constant coefiicient
N\,

L3

Add aterm | Fermove [astterm |

=10l x|

Create a first-degree
polynomial with zero offset.

Equation: ()

Equation name: |FIaEIecti0n

(0]:4 | Cancel | Help |

Clear this check box.

—— Assign a meaningful name
to the equation.

Before fitting, you should exclude the data point associated with the absentee
ballots from each data set because these voters did not use the butterfly ballot.
As described in “Marking Outliers” on page 2-28, you can exclude individual
data points from a fit either graphically or numerically using the Exclude
GUI. For this example, you should exclude the data numerically. The index of

the absentee ballot data is given by

ind
ind

68

find(strcmp(counties, 'Absentee Ballots'))

2-111

2 Interactive Curve Fitting

The Exclude GUI is shown below.
D Eecude 1ol

Exclusian rule name: [sbsenteevotes Existing exlusion rules:

~Exclude Points

Select data set: Ibuchanan ws. hush VI Exclude graphically |

Checkto exclude paint:

Index X i
|66 12182 120 -]
Mark the absentee [je? 4994 88 |
65 1875 5 =
votes to be excluded.

~Exclude Section

Exclude X [= -] | Exclude ¥ [»= | |

Exclude [<= -] | Exclude ¥ [== | |

L] <) | e |

Create exclusion rule | Fenarme | [Uelete I

Close | Help |

The exclusion rule is named AbsenteeVotes. You use the Fitting GUI to
associate an exclusion rule with the data set to be fit.

For each data set, perform a robust fit with bisquare weights using the
FlaElection equation defined above. For comparison purposes, also perform
a regular linear least squares fit. Refer to “Robust Least Squares” on page
2-55 for a description of the robust fitting methods provided by the toolbox.

You can identify the Palm Beach County data in the scatter plot by using the
data tips feature, and knowing the index number of the data point.

ind = find(strcmp(counties, 'Palm Beach'))
ind

50

2-112

Fitting Data

The Fit Editor and the Fit Options GUI are shown below for a robust fit.

preng -0l x|

Fit Edlitor

e fit Copy fit
Fithlame: |BBELinRoh
Data set: huchanan vs. hush 'l Exclusion rule:
Type of it |Custom Equations 'l [~ Center and scale X data

Custam Equation 1l

FlaElection =) Fit Dptions for custom: FlaEleck x|

Method: LinearLeastSquares

robust: (ST - —— Choose robust fitting
Unknowns | Lower | Uppar | with bisquare weig hts.
Fit options... [Immediate appl | | -Infl Inf]

Open the Fit Options GUI. v |

| Associate the excluded
| absentee votes with the fit.

The data, robust and regular least squares fits, and residuals for the buchanan
vs. bush data set are shown below.

J Curve Fitting Tool ;Iglll

File “ew Tools “Window Help

|la|# 2|2k

Data... | Fitting... | Exclude. . | Flatting... | Analysiz... |
Data and Fits
5000 T T T T T
AT buchanan vs. bush, point #50 The data ﬁp shows that
i (x=152951, y=3411) l .
ool : Buchanan received 3411
© buchanan vs bush votes in Palm Beach County.
2000 | ~-- BBLinRob
1000
1),
. .3

Residuals %10

000 ‘ ' . ' : The Palm Beach County

residual is very large.

2000 R lnReb
BELin
1000

The Miami/Dade County

residual is abo very large.

-1000
0

2-113

2 Interactive Curve Fitting

2-114

The graphical results show that the linear model is reasonable for the majority
of data points, and the residuals appear to be randomly scattered around
zero. However, two residuals stand out. The largest residual corresponds to
Palm Beach County. The other residual is at the largest predictor value, and
corresponds to Miami/Dade County.

The numerical results are shown below. The inverse slope of the robust fit
indicates that Buchanan should receive one vote for every 197.4 Bush votes.

Results

Linear model: <
fix) = n*x

Coefficients (with 95% confidence bounds):
m = 0.005066 (0.004794, 0.005337) j

The data, robust and regular least squares fits, and residuals for the buchanan
vs. gore data set are shown below.

) Curve Fitting Tool =10l x|

File Wiew Tools ‘Window Help
a2z

Data... | Fitting... | Exclude... Flatting.. Analysiz... |

Data and Fits

]

3000 O buchanan vs. gore b
=== BGLinRob
2000 — BGLin ———s

1000

4000 - T .

o DReb The Palm Beach County
2| g residual is very large.

i The Miomi/Dade and
- Broward County residuals
-2000 L ' ' ' : : : : are also very large.
0 0s 1 15 2 25 3 35 ylhrg
w10’

Fitting Data

Again, the graphical results show that the linear model is reasonable for the

majority of data points, and the residuals appear to be randomly scattered
around zero. However, three residuals stand out. The largest residual

corresponds to Palm Beach County. The other residuals are at the two largest
predictor values, and correspond to Miami/Dade County and Broward County.

The numerical results are shown below. The inverse slope of the robust fit

indicates that Buchanan should receive one vote for every 189.3 Gore votes.

Results

Linear model:
fix) = n¥x

-

Coefficients (with 95% confidence bhounds):
m = 0.005254 (0.00504, 0.005528) ;I

Using the fitted slope value, you can determine the expected number of
votes that Buchanan should have received for each fit. For the Buchanan
versus Bush data, you evaluate the fit at a predictor value of 152,951. For

the Buchanan versus Gore data, you evaluate the fit at a predictor value of

269,732. These results are shown below for both data sets and both fits.

Expected Buchanan Votes in Palm Beach County

Data Set

Fit

Expected Buchanan
Votes

Buchanan vs. Bush

Regular least squares

814

Robust least squares

775

Buchanan vs. Gore

Regular least squares

1246

Robust least squares

1425

The robust results for the Buchanan versus Bush data suggest that Buchanan
received 3411 — 775 = 2636 excess votes, while robust results for the Buchanan
versus Gore data suggest that Buchanan received 3411 — 1425 = 1986 excess

votes.

The margin of victory for George Bush is given by

margin = sum(bush) sum(gore)

2-115

2 Interactive Curve Fitting

2-116

margin =
537

Therefore, the voter intention comes into play because in both cases, the
margin of victory is less than the excess Buchanan votes.

In conclusion, the analysis of the 2000 United States presidential election
results for the state of Florida suggests that the Reform Party candidate
received an excess number of votes in Palm Beach County, and that this excess
number was a crucial factor in determining the election outcome. However,
additional analysis is required before a final conclusion can be made.

Nonparametric Fitting

In some cases, you are not concerned about extracting or interpreting fitted
parameters. Instead, you might simply want to draw a smooth curve through
your data. Fitting of this type is called nonparametric fitting. The Curve
Fitting Toolbox supports these nonparametric fitting methods:

¢ Interpolants — Estimate values that lie between known data points.

® Smoothing spline — Create a smooth curve through the data. You adjust
the level of smoothness by varying a parameter that changes the curve from
a least squares straight-line approximation to a cubic spline interpolant.

For more information about interpolation, refer to “Polynomials and
Interpolation” and the interp1 function in the MATLAB documentation.

Interpolants

Interpolation is a process for estimating values that lie between known data
points. The supported interpolant methods are shown below.

Fitting Data

Interpolant Methods

Method Description

Linear Linear interpolation. This method fits a different
linear polynomial between each pair of data points.

Nearest neighbor Nearest neighbor interpolation. This method sets
the value of an interpolated point to the value of the
nearest data point. Therefore, this method does not
generate any new data points.

Cubic spline Cubic spline interpolation. This method fits a
different cubic polynomial between each pair of data
points.

Shape-preserving Piecewise cubic Hermite interpolation (PCHIP). This
method preserves monotonicity and the shape of the
data.

The type of interpolant you should use depends on the characteristics of the
data being fit, the required smoothness of the curve, speed considerations,
postfit analysis requirements, and so on. The linear and nearest neighbor
methods are fast, but the resulting curves are not very smooth. The cubic
spline and shape-preserving methods are slower, but the resulting curves
are often very smooth.

For example, the nuclear reaction data from the file carboni12alpha.mat is
shown below with a nearest neighbor interpolant fit and a shape-preserving
(PCHIP) interpolant fit. Clearly, the nearest neighbor interpolant does not
follow the data as well as the shape-preserving interpolant. The difference
between these two fits can be important if you are interpolating. However,
if you want to integrate the data to get a sense of the total unormalized
strength of the reaction, then both fits provide nearly identical answers for
reasonable integration bin widths.

2-117

2 Interactive Curve Fitting

2-118

350 T T T T T L= T

T
a3 C12Alpha
} — nearmst
-—- pchip

300

250

200

counts

100

S0

45

Note Goodness-of-fit statistics, prediction bounds, and weights are not
defined for interpolants. Additionally, the fit residuals are always zero (within
computer precision) because interpolants pass through the data points.

Interpolants are defined as piecewise polynomials because the fitted curve is
constructed from many “pieces.” For cubic spline and PCHIP interpolation,
each piece is described by four coefficients, which are calculated using a cubic
(third-degree) polynomial. Refer to the spline function for more information
about cubic spline interpolation. Refer to the pchip function for more
information about shape-preserving interpolation, and for a comparison of
the two methods.

It is possible to fit a single “global” polynomial interpolant to data, with a
degree one less than the number of data points. However, such a fit can
have wildly erratic behavior between data points. In contrast, the piecewise
polynomials described here always produce a well-behaved fit, and thus they

Fitting Data

are more flexible than parametric polynomials and can be effectively used for
a wider range of data sets.

Smoothing Spline

If your data is noisy, you might want to fit it using a smoothing spline.
Alternatively, you can use one of the smoothing methods described in
“Smoothing Data” on page 2-9.

The smoothing spline s is constructed for the specified smoothing parameter p
and the specified weights w,. The smoothing spline minimizes

2 .2
pY w,(3; -5’ +(L-p)| j—sz dx
i X |

If the weights are not specified, they are assumed to be 1 for all data points.

p is defined between 0 and 1. p = 0 produces a least squares straight line
fit to the data, while p = 1 produces a cubic spline interpolant. If you do
not specify the smoothing parameter, it is automatically selected in the
“interesting range.” The interesting range of p is often near 1/(1+A%/6) where
h is the average spacing of the data points, and it is typically much smaller
than the allowed range of the parameter. Because smoothing splines have
an associated smoothing parameter, you might consider these fits to be
parametric in that sense. However, smoothing splines are also piecewise
polynomials like cubic spline or shape-preserving interpolants and are
considered a nonparametric fit type in this guide.

Note The smoothing spline algorithm used by the Curve Fitting Toolbox is
based on the csaps function included with the Spline Toolbox. Refer to the
csaps reference pages for detailed information about smoothing splines.

The nuclear reaction data from the file carbon12alpha.mat is shown below
with three smoothing spline fits. The default smoothing parameter (p = 0.99)
produces the smoothest curve. The cubic spline curve (p = 1) goes through
all the data points, but is not quite as smooth. The third curve (p = 0.95)

2-119

2 Interactive Curve Fitting

2-120

misses the data by wide margin and illustrates how small the “interesting
range” of p can be.

350 T T T T T

T
O C12Alpha
— p=detault
o p=
- p=085

300~

200F
£
ERE S
8

100

0.5 1 15 2 25 3 3.5 4 4.5
angle

Example: Nonparametric Fitting

This example fits the following data using a cubic spline interpolant and
several smoothing splines.

rand('state',0);
X = (4*pi)*[0 1 rand(1,25)];
y = sin(x) + .2*(rand(size(x))-.5);

As shown below, you can fit the data with a cubic spline interpolant by
selecting Interpolant from the Type of fit list.

Fitting Data

CETTEEEN RETY

Fit Editor

N fit Copy it

Fit Marme: W

Data set: lm Exclusion rule: m
Type offit: |Interpolant hd [Center and scale X data
Interpolant

linear
nearest neighbar
cubic spline

shape-preserving

The results shown below indicate that goodness-of-fit statistics are not defined
for interpolants.

Results
Cubic spline interpolant: =

fix) = piecewise polynomial computed from p
Coefficients:
p = coefficient structure

Goodness of fit:
S5E: 2.359e-033
R-square: 1
Adjusted R-square: Nal j

As described in “Interpolants” on page 2-116, cubic spline interpolation is
defined as a piecewise polynomial that results in a structure of coefficients.
The number of “pieces” in the structure is one less than the number of fitted
data points, and the number of coefficients for each piece is four because

the polynomial degree is three. The toolbox does not allow you to access the
structure of coefficients.

As shown below, you can fit the data with a smoothing spline by selecting
Smoothing Spline in the Type of fit list.

2-121

2 Interactive Curve Fitting

2-122

Fit Editor

[lew fit | Copy fit |

Fit Mame ISmnntm
INmsvSine -

Smoothing Spline -

=10 %]

Exclusion rule I(none) -

[Center and scale ¥ data

Data set:
Type of fit

Smoothing Spline
Smoothing Parameter:

@ Default

C Bpectyt = ||U.BE|91E|

The default smoothing
—— parameter i based on
the data set you fit.

Lo

The level of smoothness is given by the Smoothing Parameter. The default
smoothing parameter value depends on the data set, and is automatically
calculated by the toolbox after you click the Apply button.

For this data set, the default smoothing parameter is close to 1, indicating
that the smoothing spline is nearly cubic and comes very close to passing
through each data point. Create a fit for the default smoothing parameter and
name it Smooth1. If you do not like the level of smoothing produced by the
default smoothing parameter, you can specify any value between 0 and 1. A
value of 0 produces a linear polynomial fit, while a value of 1 produces a
piecewise cubic polynomial fit that passes through all the data points. For
comparison purposes, create another smoothing spline fit using a smoothing
parameter of 0.5 and name the fit Smooth2.

The numerical results for the smoothing spline fit Smooth1 are shown below.

Results

Smoothing spline: =
fix) = piecewise polynomial computed from p
Smoothing parameter:
p = 0.99919036

Goodness of fir:
S5E: 0.003493
R-smquare: 0.9937
Adjusted R-square: 0.5353
BMZE: 0.02217

Kl

The data and fits are shown below. The default abscissa scale was increased
to show the fit behavior beyond the data limits. You change the axes limits
with Tools > Axes Limit Control menu item.

Fitting Data

-} Curve Fitting Tool ;IEIEI

File Wiew Tools wWindow Help
el o2k

Data... | Fitting... | Exclude... Flatting. . Analpsiz... |

< MoisySine
...... CUhlESp H
— Smoothl
=== Smooth2

/ _ The cubic spline and default
smoothing spline results are
similar for interior points.

0sf i

The cubic spline and default
smoothing spline results
diverge at the end poinis.

051

i 2 4 B\] m 14
\ ‘e The defauli smoothing
N parameter produces a i
N\ smoother result than
\ the interpolant.

Note that the default smoothing parameter produces a curve that is smoother
than the interpolant, but is a good fit to the data. In this case, decreasing
the smoothing parameter from the default value produces a curve that is
smoother still, but is not a good fit to the data. As the smoothing parameter
increases beyond the default value, the associated curve approaches the cubic
spline interpolant.

2-123

2 Interactive Curve Fitting

2-124

Selected Bibliography

[1] Draper, N.R and H. Smith, Applied Regression Analysis, 3rd Ed., John
Wiley & Sons, New York, 1998.

[2] Bevington, P.R. and D.K. Robinson, Data Reduction and Error Analysis for
the Physical Sciences, 2nd Ed., WCB/McGraw-Hill, Boston, 1992.

[3] Daniel, C. and F.S. Wood, Fitting Equations to Data, John Wiley & Sons,
New York, 1980.

[4] Branch, M.A., T.F. Coleman, and Y. Li, “A Subspace, Interior, and
Conjugate Gradient Method for Large-Scale Bound-Constrained Minimization
Problems,” SIAM Journal on Scientific Computing, Vol. 21, Number 1, pp.
1-23, 1999.

[5] Levenberg, K., “A Method for the Solution of Certain Problems in Least
Squares,” Quart. Appl. Math, Vol. 2, pp. 164-168, 1944.

[6] Marquardt, D., “An Algorithm for Least Squares Estimation of Nonlinear
Parameters,” SIAM J. Appl. Math, Vol. 11, pp. 431-441, 1963.

[71 DuMouchel, W. and F. O’Brien, “Integrating a Robust Option into a
Multiple Regression Computing Environment,” in Computing Science and
Statistics: Proceedings of the 21st Symposium on the Interface, (K. Berk
and L. Malone, eds.), American Statistical Association, Alexandria, VA, pp.
297-301, 1989.

[8] DeAngelis, D.J., J.R. Calarco, J.E. Wise, H.J. Emrich, R. Neuhausen,
and H. Weyand, “Multipole Strength in '2C from the (e,e’a) Reaction for
Momentum Transfers up to 0.61 fm™,” Phys. Rev. C, Vol. 52, Number 1, pp.
61-75 (1995).

Programmatic Curve
Fitting

This chapter describes how to use objects and methods in the Curve Fitting
Toolbox for M-file programming.

Curve Fitting Objects and Methods Curve fitting outside of the Curve
(p. 3-3) Fitting Tool

Interactive Code Generation (p. 3-24) Using code from the Curve Fitting
Tool

3 Programmatic Curve Fitting

Note Much of the basic statistical theory underlying curve fitting methods
was presented in Chapter 2, “Interactive Curve Fitting”, and will not be
repeated here. See, for example

“Moving Average Filtering” on page 2-13

* “Lowess and Loess: Local Regression Smoothing” on page 2-15
® “Savitzky-Golay Filtering” on page 2-20

¢ “Transforming Response Data” on page 2-41

¢ “Basic Assumptions About the Error” on page 2-48

® “The Least Squares Fitting Method” on page 2-49

¢ “Evaluating the Goodness of Fit” on page 2-71

¢ “Interpolants” on page 2-116

® “Smoothing Spline” on page 2-119

Curve Fitting Objects and Methods

Curve Fitting Objects and Methods

This section describes how to use the functions in the Curve Fitting Toolbox to
write object-oriented programs for curve fitting applications.

Overview (p. 3-3) Introduction to object-oriented
fitting

Curve Fitting Objects (p. 3-4) Objects in the Curve Fitting Toolbox

Curve Fitting Methods (p. 3-5) Methods in the Curve Fitting Toolbox

Workflow for Object-Oriented Fitting Programmatic steps for data fitting

(p. 3-7) and analysis

Examples (p. 3-9) Using curve fitting objects and
methods

Overview

In MATLAB programming, all workspace variables are objects of a particular
class. Familiar examples of MATLAB classes are double, char, and
function_handle. MATLAB also allows you to create custom classes, using
object-oriented programming.

Methods are functions that operate exclusively on objects of a particular
class. Data types package together objects and methods so that the methods
operate exclusively on objects of their own type, and not on objects of other
types. A clearly defined encapsulation of objects and methods is the goal of
object-oriented programming.

The Curve Fitting Toolbox provides you with two new MATLAB data types
for performing curve fitting:

e fittype — Objects allow you to encapsulate information describing a
parametric model for your data. Methods allow you to access and modify
that information.

e cfit — A subtype of fittype. Objects capture information from a
particular fit by assigning values to coefficients, confidence intervals, fit
statistics, etc. Methods allow you to post-process the fit, through plotting,
extrapolation, integration, etc.

3 Programmatic Curve Fitting

fFittype
objects

Because cfit is a subtype of fittype, cfit inherits all fittype methods.
In other words, you can apply fittype methods to both fittype and cfit
objects, but cfit methods are used exclusively with cfit objects.

As an example, the fittype method islinear, which determines if a model
is linear or nonlinear, would apply equally well before or after a fit; that is,

to both fittype and cfit objects. On the other hand, the cfit methods
coeffvalues and confint, which, respectively, return fit coefficients and their
confidence intervals, would make no sense if applied to a general fittype
object which describes a parametric model with undetermined coefficients.

Curve Fitting Objects

Curve fitting objects have properties that depend on their type, and also on
the particulars of the model or the fit that they encapsulate. For example, the
following code uses the constructor methods for the two curve fitting types

to create a fittype object f and a cfit object c:

f
f =

fittype('a*x"2+b*exp(n*x)"')

General model:
f(a,b,n,x) = a*x"2+b*exp(n*x)
c = cfit(f,1,10.3,-1e2)

General model:
c(x) = a*x"2+b*exp(n*x)

Curve Fitting Objects and Methods

Coefficients:
a = 1
b = 10.3
n = -100

Note that the display method for fittype objects returns only basic
information, piecing together outputs from formula and indepnames.

Curve Fitting Methods

Curve fitting methods allow you to create, access, and modify curve fitting
objects. They also allow you, through methods like plot and integrate,
to perform operations that uniformly process the entirety of information
encapsulated in a curve fitting object.

The methods listed in the following table are available for all fittype objects,
including cfit objects.

Fit Type Method Description

argnames Get input argument names

category Get fit category

coeffnames Get coefficient names

dependnames Get dependent variable name

feval Evaluate model at specified predictors
fittype Construct fittype object

formula Get formula string

indepnames Get independent variable name
islinear Determine if model is linear

numargs Get number of input arguments
numcoeffs Get number of coefficients

probnames Get problem-dependent parameter names
type Get name of model

3 Programmatic Curve Fitting

The methods listed in the following table are available exclusively forcfit

objects.
Curve Fit Method Description
cfit Construct cfit object
coeffvalues Get coefficient values
confint Get confidence intervals for fit coefficients
differentiate Differentiate fit
integrate Integrate fit
plot Plot fit
predint Get prediction intervals
probvalues Get problem-dependent parameter values

A complete list of methods for a curve fitting object can be obtained with the

MATLAB methods command. For example,

f = fittype('a*x"2+b*exp(n*x)"');
methods ()

Methods for class fittype:

argnames fitoptions
cat fittype
category formula
char getcoeffmatrix
clearhandles horzcat
coeffnames indepnames
constants integexpr
dependnames isempty
derivexpr islinear
disp linearexprs
display linearterms
exist loadobj
feval nargin
fevalexpr nargout

nonlinearcoeffs
numargs
numcoeffs
prettyname
probnames
saveobj
setoptions
startpt
subsasgn
subsref
symvar
type
vertcat

Curve Fitting Objects and Methods

Note that some of the methods listed by methods do not appear in the tables
above, and do not have reference pages in the documentation for the Curve
Fitting Toolbox. These additional methods are generally low-level operations
used by the Curve Fitting Tool, and not of general interest when writing
curve fitting applications.

There are no global accessor methods, comparable to getfield and setfield,
available for fittype objects. Access is limited to the methods listed above.
This is because many of the properties of fittype objects are derived from
other properties, for which you do have access. For example,

f = fittype('a*cos(b*x-c)')

f =
General model:
f(a,b,c,x) = a*cos(b*x-c)
formula(f)
ans =

a*cos(b*x-c)

argnames (T)
ans =

You construct the fittype object f by giving the formula, so you do have
write access to that basic property of the object. You have read access to that
property through the formula method. You also have read access to the
argument names of the object, through the argnames method. You don’t,
however, have direct write access to the argument names, which are derived
from the formula. If you want to set the argument names, set the formula.

Workflow for Object-Oriented Fitting

The Curve Fitting Toolbox provides a variety of methods for data analysis and
modeling. In application, these methods are applied in a systematic manner,
which can be represented in a standard workflow diagram such as the one
below.

3 Programmatic Curve Fitting

fittype

load

differentiate
fitoptions integrate
fittype L
ohject
fit ot plot
ohject
data T
excludedata confint
smooth predint

A typical analysis using curve fitting methods proceeds as follows:

1 Import your data into MATLAB using the load command (if your data

has previously been stored in MATLAB variables) or any of the more
specialized MATLAB functions for reading data from particular file types.

2 If your data is noisy, you might want to smooth it using the smooth

function. Smoothing is used to identify major trends in the data that can
assist you in choosing an appropriate family of parametric models. If a
parametric model is not evident or appropriate, smoothing can be an end in
itself, providing a nonparametric fit of the data.

Note Smoothing estimates the center of the distribution of the response at
each predictor. It invalidates the assumption that errors in the data are
normally distributed, and so also invalidates the methods used to compute
confidence and prediction intervals. Accordingly, once a parametric model
is identified through smoothing, the original data should be passed to the
fit function.

Curve Fitting Objects and Methods

3 A parametric model for the data—either a library model in the Curve
Fitting Toolbox or a custom model that you define—is specified as a
fittype object using the fittype function. Library models can be
displayed with the cflibhelp function.

4 A fit options structure can be created for the fit using the fitoptions
function. Fit options specify things like weights for the data, fitting
methods, and low-level options for the fitting algorithm.

5 An exclusion rule can be created for the fit using the excludedata function.
Exclusion rules indicate which data values will be treated as outliers and
excluded from the fit.

6 Data, a fittype object, and (optionally) a fit options structure and an
exclusion rule are all passed to the fit function to perform the fit. The fit
function returns a cfit object that encapsulates the computed coefficients
and the fit statistics.

7 cfit objects returned by the fit function can then be passed to a variety
of postprocessing functions, such as differentiate, integrate, plot,
confint, and predint.

Examples

The following examples illustrate the standard workflow outlined in
“Workflow for Object-Oriented Fitting” on page 3-7. Further examples of
programmatic fitting can be found in the reference pages for individual curve
fitting methods.

Example: Smoothing Data I (p. 3-10) Basic use of smooth

Example: Smoothing Data II Smoothing and robust smoothing
(p. 3-11)

Example: Excluding Data (p. 3-12) Combining methods for robust fitting
and residual analysis

Example: Specifying Fit Options Using fitoptions with fit
(p. 3-15)

Example: Robust Fitting (p. 3-16) Robust fitting and outlier analysis

3 Programmatic Curve Fitting

3-10

Example: Differentiating and Basic postprocessing of a fit
Integrating a Fit (p. 3-18)

Example: Prediction Intervals Predicting from the fit

(p. 3-22)

Example: Smoothing Data |
Load the data in count.dat:

load count.dat

The 24-by-3 array count contains traffic counts at three intersections for
each hour of the day.

First, use a moving average filter with a 5-hour span to smooth all of the
data at once (by linear index) :

¢ = smooth(count(:));
C1 = reshape(c,24,3);

Plot the original data and the smoothed data:

subplot(3,1,1)
plot(count,':");

hold on

plot(C1,'-");

title('Smooth C1 (All Data)')

Second, use the same filter to smooth each column of the data separately:

C2 = zeros(24,3);
for I = 1:3,

C2(:,I) = smooth(count(:,I));
end

Again, plot the original data and the smoothed data:

subplot(3,1,2)
plot(count,':");
hold on
plot(C2,'-');

Curve Fitting Objects and Methods

title('Smooth C2 (Each Column)')

Plot the difference between the two smoothed data sets:

subplot(3,1,3)
plot(C2 - C1,'o-")
title('Difference C2 - C1')

Smoaoth C1 (Al Data)

400 . r : .
2001 B .
0
0
Smooth C2 (Each Column)
400 T T T .
200F B .
,..-'-f"'—n“'\-._ E _\‘ T
O -.-" s | —
0 5 10 15 20 25
Difference C2 - C1
10 T T T T
O-—@ﬁkﬂ %Efg_
_-10 1 1 1 1
0 5 10 15 20 25

Note the additional end effects from the 3-column smooth.

Example: Smoothing Data Il
Create noisy data with outliers:

X 15*rand(150,1);
y sin(x) + 0.5*(rand(size(x))-0.5);
y(ceil(length(x)*rand(2,1))) = 3;

Smooth the data using the loess and rloess methods with a span of 10%:

yy1l = smooth(x,y,0.1,"'loess');
yy2 = smooth(x,y,0.1,'rloess');
d

Plot original data and the smoothed data.

3-11

3 Programmatic Curve Fitting

[xx,ind] = sort(x);

subplot(2,1,1)

plot(xx,y(ind), 'b."',xx,yy1(ind), " 'r-")

set(gca, 'YLim',[-1.5 3.5])

legend('Original Data', 'Smoothed Data Using '‘'loess''',...
‘Location', 'NW")

subplot(2,1,2)

plot(xx,y(ind), 'b."',xx,yy2(ind),"'r-")

set(gca, 'YLim',[-1.5 3.5])

legend('Original Data', 'Smoothed Data Using '‘'rloess''',...
‘Location', 'NW")

+ Original Data *

3

2 = Smoocthed Data Using 'loess' .
.1 . Iy

0

3 + Original Data *
2 F|— Smoothed Data Using 'floess' .
0

Note that the outliers have less influence on the robust method.

Example: Excluding Data
Load the vote counts and county names for the state of Florida from the 2000
U.S. presidential election:

load flvote2k

3-12

Curve Fitting Objects and Methods

Use the vote counts for the two major party candidates, Bush and Gore, as
predictors for the vote counts for third-party candidate Buchanan, and plot
the scatters:

plot(bush,buchanan, 'rs')

hold on
plot(gore,buchanan, 'bo"')
legend('Bush data', 'Gore data')

500 . = . R
O Bush data
3000 o Gore data ||
28001 4
2000 F 4
1500 F 4
1000 -
o
500 0w .
O 1
3 4
x10°

Assume a model where a fixed proportion of Bush or Gore voters choose to
vote for Buchanan:

.f
f =

fittype({'x"'})

Linear model:
f(a,x) = a*x

Exclude the data from absentee voters, who did not use the controversial
“butterfly” ballot:

absentee = find(strcmp(counties, 'Absentee Ballots'));
nobutterfly = excludedata(bush,buchanan,'indices',absentee);

3-13

3 Programmatic Curve Fitting

Perform a bisquare weights robust fit of the model to the two data sets,
excluding absentee voters:

bushfit = fit(bush,buchanan,f,'Exclude’',nobutterfly, 'Robust','on');
gorefit = fit(gore,buchanan,f, 'Exclude’',nobutterfly, 'Robust','on');

Robust fits give outliers a low weight, so large residuals from a robust fit
can be used to identify the outliers:

figure
plot(bushfit,bush,buchanan,'rs', 'residuals')
hold on
plot(gorefit,gore,buchanan, 'bo', 'residuals')

3000 . . :

O O data
zero line ||
2000 F o © data
zero ling
1500 + .

2500+

1000 - .
500 - .
0

-500+ .
-1000 - .

-1500 ' '
0

5

¥ 10

The residuals in the plot above can be computed as follows:

bushres = buchanan - feval(bushfit,bush);
goreres = buchanan - feval(gorefit,gore);

Large residuals can be identified as those outside the range [-500 500]:

bushoutliers = excludedata(bush,bushres, 'range',[-500 500]);

3-14

Curve Fitting Objects and Methods

goreoutliers = excludedata(gore,goreres, 'range',[-500 500]);

The outliers for the two data sets correspond to the following counties:

counties(bushoutliers)
ans =

‘Miami-Dade'

‘Palm Beach'

counties(goreoutliers)
ans =
'‘Broward’
‘Miami-Dade'
‘Palm Beach'

Miami-Dade and Broward counties correspond to the largest predictor values.
Palm Beach county, the only county in the state to use the “butterfly” ballot,
corresponds to the largest residual values.

Example: Specifying Fit Options
Create the default fit options structure and set the option to center and scale
the data before fitting:

options = fitoptions;
options.Normal = '‘on';
options
options =
Normalize: 'on'
Exclude: [1x0 double]
Weights: [1x0 double]
Method: 'None’

Modifying the default fit options structure is useful when you want to set the
Normalize, Exclude, or Weights fields, and then fit your data using the same
options with different fitting methods. For example:

load census

f1 = fit(cdate,pop, 'poly3',options);
f2 = fit(cdate,pop, 'exp1',options);
f3 = fit(cdate,pop, 'cubicsp',options);

3-15

3 Programmatic Curve Fitting

3-16

Data-dependent fit options are returned in the third output argument of the
fit function. For example:

[f,gof,out] = fit(cdate,pop, 'smooth');
smoothparam = out.p
smoothparam =

0.0089

The default smoothing parameter can be modified for a new fit:
options = fitoptions('Method', 'Smooth', 'SmoothingParam',0.0098);
[f,gof,out] = fit(cdate,pop, 'smooth',options);

Example: Robust Fitting
Create a baseline sinusoidal signal:

xdata = (0:0.1:2*pi)"';
y0 = sin(xdata);

Add noise to the signal with non-constant variance:

% Response-dependent Gaussian noise
gnoise = y0.*randn(size(y0));

% Salt-and-pepper noise

spnoise = zeros(size(y0));

p = randperm(length(y0));

sppoints = p(1:round(length(p)/5));
spnoise(sppoints) = 5*sign(y0(sppoints));

ydata = y0 + gnhoise + spnoise;
Fit the noisy data with a baseline sinusoidal model:

f = fittype('a*sin(b*x)"');
fit1 = fit(xdata,ydata,f,'StartPoint',[1 1]);

Identify “outliers” as points at a distance greater than 1.5 standard deviations
from the baseline model, and refit the data with the outliers excluded:

fdata = feval(fiti1,xdata);

Curve Fitting Objects and Methods

I = abs(fdata - ydata) > 1.5*std(ydata);
outliers = excludedata(xdata,ydata, 'indices',I);

fit2 = fit(xdata,ydata,f, 'StartPoint',[1 1], 'Exclude’',outliers);

Compare the effect of excluding the outliers with the effect of giving them
lower bisquare weight in a robust fit:

fit3 = fit(xdata,ydata,f, 'StartPoint',[1 1], 'Robust','on');

Plot the data, the outliers, and the results of the fits:

plot(fittl,'r-',xdata,ydata, 'k."',outliers, 'm*")
hold on

plot(fit2,'c--")

plot(fit3,'b:")

x1lim([0 2*pi])

g T . T T . T
* + data
6L o " ¥ excluded data |
* * fitted curve
4k * fitted curve
--------- fitted curve

Plot the residuals for the two fits considering outliers:

figure
plot(fit2,xdata,ydata,'co', 'residuals"')

3-17

3 Programmatic Curve Fitting

hold on
plot(fit3,xdata,ydata, 'bx', 'residuals')

& T T T T T T
N 2 %o data
al zeroline | |
w * o data
zero line
2r b q
b
XX ® % w i
)
0 Ko *® Ko s Ko AR R Gk i
® w5 e
% ® x X
2 r E _
4t 8 -
XX * = W
_6 1 1 1 1 1 1
0 1 2 3 4 5 & 7
X

Example: Differentiating and Integrating a Fit
Create a baseline sinusoidal signal:

xdata = (0:.1:2*pi)"';
y0 = sin(xdata);

Add noise to the signal:

noise = 2*y0.*randn(size(y0)); % Response-dependent Gaussian noise
ydata = y0 + noise;

Fit the noisy data with a custom sinusoidal model:

f = fittype('a*sin(b*x)"');
fit1 = fit(xdata,ydata,f, 'StartPoint',[1 1]);

Find the derivatives of the fit at the predictors:

[d1,d2] = differentiate(fit1,xdata);

3-18

Curve Fitting Objects and Methods

Plot the data, the fit, and the derivatives:

subplot(3,1,1)

plot(fit1,xdata,ydata) % cfit plot method
subplot(3,1,2)

plot(xdata,d1,'m') % double plot method
grid on

legend('1st derivative')

subplot(3,1,3)

plot(xdata,d2,'c') % double plot method
grid on

legend('2nd derivative')

3-19

3 Programmatic Curve Fitting

3-20

5] . T T T . .
at . + data
fitted curve
2 -
0 4
_4 I I 1 1 I * L
0 1 2 3 4 5 & 7
X
1 T T T T T T
1st derivative
i
§ 7
1 : : ; ; i i
! ! : : 2nd derivative
05 ...
A £
B e e e e e P e e R EEEEEREEES
-1 l l 1 1 l l
0 1 2 3 4 G 6 7

Note that derivatives can also be computed and plotted directly with the
cfit plot method, as follows:

plot(fit1,xdata,ydata,{ fit', 'derivi','deriv2'})
The plot method, however, does not return data on the derivatives.

Find the integral of the fit at the predictors:

Curve Fitting Objects and Methods

int = integrate(fiti1,xdata,0);

Plot the data, the fit, and the integral:

subplot(2,1,1)

plot(fitl1,xdata,ydata) % cfit plot method
subplot(2,1,2)

plot(xdata,int,'m') % double plot method
grid on

legend('integral')

6 T T T T T T
al * + data |
. . * fitted curve
3 4
=

0 i
2 -
| 1 1 1 Lt | * 1

1] 1 2 3 4 5 B 7

kS

Note that integrals can also be computed and plotted directly with the cfit
plot method, as follows:

plot(fiti,xdata,ydata,{'fit', " 'integral'})

The plot method, however, does not return data on the integral.

3-21

3 Programmatic Curve Fitting

Example: Prediction Intervals
Generate data with an exponential trend:

x = (0:0.2:5)';
y 2*exp(-0.2*x) + 0.5*randn(size(x));

Fit the data using a single-term exponential:

fitresult = fit(x,y, ' 'expl');

Compute prediction intervals:

p11 = predint
pi2 predint
p21 predint
p22 = predint

fitresult,x,0.95, 'observation', 'off');
fitresult,x,0.95, 'observation','on');
fitresult,x,0.95, 'functional', 'off');
fitresult,x,0.95, 'functional','on');

—_~ o~~~

Plot the data, fit, and prediction intervals:

3-22

subplot(2,2,1)

plot(fitresult,x,y), hold on, plot(x,p11,'m--"), x1lim([O0 5])
title('Nonsimultaneous observation bounds', 'Color','m')
subplot(2,2,2)

plot(fitresult,x,y), hold on, plot(x,p12,'m--"'), x1lim([O0 5])
title('Simultaneous observation bounds', 'Color','m')
subplot(2,2,3)

plot(fitresult,x,y), hold on, plot(x,p21,'m--"), x1lim([O0 5])
title('Nonsimultaneous functional bounds', 'Color','m')
subplot(2,2,4)

plot(fitresult,x,y), hold on, plot(x,p22,'m--'), x1lim([O0 5])
title('Simultaneous functional bounds', 'Color','m')

Curve Fitting Objects and Methods

Monsimultaneous observation bounds

*

data

fited curve

Monsimultaneous functional bounds

N .

data
fited curve |

Simultaneous observation bounds

— .

data
fitted curve |

X
Simultaneous functional bounds
. + data
N fitted curve |4

3-23

3 Programmatic Curve Fitting

3-24

Interactive Code Generation

This section describes how to generate and use MATLAB code from an
interactive session in the Curve Fitting Tool.

Overview (p. 3-24) Introduction to interactive code
generation

The Generated M-file (p. 3-25) Code from the Curve Fitting Tool

Running the Generated M-file Working outside the Curve Fitting

(p. 3-27) Tool

Understanding the Components of An analysis of the generated code
the Generated M-File (p. 3-29)

Modifying the Code (p. 3-32) Making generated code your own

Overview

One way to quickly assemble curve fitting objects and methods into useful
programs is to generate an M-file from a session in the Curve Fitting Tool. In
this way, interactive analysis of a single data set is transformed into a reusable
function for batch processing of multiple data sets. The generated M-file can
be used without modification, or it can be edited and customized as needed.

To generate an M-file from a session in the Curve Fitting Tool, select the
menu item File > Generate M-file.

The M-file captures the following information from the Curve Fitting Tool:

* Names of variables, fits, and residuals

¢ Fit options, such as whether the data should be normalized, initial values
for the coefficients, and the fitting method

¢ Curve fitting objects and methods used to create the fit

You can recreate your Curve Fitting Tool session by calling the M-file from
the command line with your original data as input arguments. You can also
call the M-file with new data, applying the assembled curve fitting methods
to re-compute curve fitting objects.

Interactive Code Generation

The Generated M-file

M-files generated from the Curve Fitting Tool are constructed from

building-block components of code, which you can analyze, modify, and re-use
in your own M-files. The components of the generated M-file provide good
examples of how to assemble curve fitting objects and methods to perform
basic tasks. The larger M-file shows you how to assemble those tasks into a

complete analysis of your data.

For example, the following M-file was generated from a session in the Curve

Fitting Tool that imported the data from census.mat and fit a custom
nonlinear model of the form y = a(x—b)%:

function myfit(cdate,pop)
SMYFIT Create plot of datasets and fits
MYFIT (CDATE,POP)

d® o° o° o° o°

o°

customize the code and this help message.

o°

o°

Number of datasets: 1
Number of fits: 1

o°

o°

Data from dataset "census":

% X = cdate:
% Y = pop:
% Unweighted

o°

o°

o°

Set up figure to receive datasets and fits
_ = clf;
figure(f_);

-

set(f_,'Units','Pixels', 'Position',[183.6 68.1 814.4 571.8]);

legh_ = [1; legt_ = {}; % handles and text for legend
xlim_ = [Inf -Inf]; % limits of x axis

ax_ = axes;

set(ax_, 'Units', 'normalized', 'OuterPosition',[0 O 1 1]);

Creates a plot, similar to the plot in the main curve fitting
window, using the data that you provide as input. You can
apply this function to the same data you used with cftool
or with different data. You may want to edit the function to

This function was automatically generated on 22-Jul-2006 10:09:39

3-25

3 Programmatic Curve Fitting

set(ax_, 'Box','on');
axes(ax_); hold on;

% --- Plot data originally in dataset "census"
cdate = cdate(:);
pop = pop(:);

h_ = line(cdate,pop, 'Parent',ax_, 'Color',[0.333333 0 0.666667],...
'LineStyle', 'none', 'LineWidth',1,...
'Marker','."', 'MarkerSize',12);

xlim_(1) = min(x1lim_(1),min(cdate));

xlim_(2) = max(xlim_(2),max(cdate));
legh_(end+1) = h_;
legt {end+1} = 'census';

% Nudge axis limits beyond data limits

if all(isfinite(x1lim_))
xlim_ = xlim_ + [-1 1] * 0.01 * diff(xlim_);
set(ax_, 'XLim',x1lim_)

end

% --- Create fit "censusfit"

fo_ = fitoptions('method', 'NonlinearLeastSquares','Lower',[0 O]);
ok_ = ~(isnan(cdate) | isnan(pop));

st_ = [111];

set(fo_, 'Startpoint',st_);

ft_ = fittype('a*(x-b)"3',...
'dependent',{'y'}, 'independent',{'x'},...
‘coefficients',{'a', 'b'});

% Fit this model using new data
cf_ = fit(cdate(ok_),pop(ok_),ft ,fo);

% Or use coefficients from the original fit:

if 0
cv_ = {1.359437793879e-005, 1724.696932124};
cf_ = cfit(ft_,cv_{:});

end

3-26

Interactive Code Generation

% Plot this fit
h_ = plot(cf_,'fit',0.95);
legend off; % turn off legend from plot method call
set(h_(1),'Color',[1 0 O],...
'LineStyle','-"', 'LineWidth',2,...
'Marker', 'none', 'MarkerSize',6);
legh_(end+1) = h_(1);
legt _{end+1} = 'censusfit';

% Done plotting data and fits. Now finish up loose ends.
hold off;

h_ = legend(ax_,legh_,legt ,'Location', 'NorthEast');
set(h_, 'Interpreter', 'none');

xlabel(ax_,"'"'); % remove x label
ylabel(ax_,"'"); % remove y label

A quick look through the code shows that it has automatically assembled for
you many of the curve fitting methods from the Curve Fitting Toolbox, such as
fitoptions, fittype, fit, and plot.

Running the Generated M-file

To run the generated M-file without modification, and reproduce your original
Curve Fitting Tool session, type:

load census
myfit(cdate,pop)

3-27

3 Programmatic Curve Fitting

200 . T T r
* Census
censusfit

2501

2001 -

150+ .

100 -

S0t -

O 1 1 1
1800 1850 1900 1950

To run the M-file without modification on new data, pass the new data to the
function as input arguments:

newpop = pop + 50*randn(size(pop));
myfit(cdate,newpop)

300 — . . .
s Census
censusfit |]

2501

200

150

100

&0

OF 4

50} . " :

100

1800 1850 1800 1850

3-28

Interactive Code Generation

The M-file recomputes the cfit object for the fit and displays the new data
with the new fit.

Understanding the Components of the Generated
M-File

It is useful to take a closer look at the components of the generated M-file, to
understand the role that each component plays in the overall visualization

and analysis of the data. This allows you to change the M-file, and customize
it to your needs.

The M-file begins with a function declaration:

function myfit(cdate,pop)

The function accepts predictor and response data for a predefined fit type.
The inputs are called cdate and pop because those were the predictor and
response variables used in the Curve Fitting Tool session that produced the
file. If you like, you can find and replace the input names here and elsewhere
in the file to indicate a more generic application of the fit.

Note that the file, as generated, returns no outputs. It simply applies the fit
to the input data and displays the results.

The next component of the M-file, after the help information, is the following:

% Set up figure to receive datasets and fits

f_ = clf;

figure(f_);

set(f_, 'Units', 'Pixels', 'Position',[183.6 68.1 814.4 571.8]);
legh_ = []; legt_ = {}; % handles and text for legend
xlim_ [Inf -Inf]; % limits of x axis

ax_ = axes;

set(ax_, 'Units', 'normalized', 'OuterPosition',[0 0 1 1]);
set(ax_, 'Box','on');

axes(ax_); hold on;

These are Handle Graphics methods, applied to Handle Graphics objects
that encapsulate information on the display of the figure window, the legend,
and the axes. This component of the M-file creates a figure for plotting that

3-29

3 Programmatic Curve Fitting

mimics the Plotting GUI in the Curve Fitting Tool. Note that at the end of
this component hold is toggled on. This allows the input data and the fit

to

be plotted together on the axes.

The next component of the M-file plots the input data, using Handle Graphics
methods to set properties of the line object, the axes, and the legend that
mimic the plot in the Curve Fitting Tool:

% --- Plot data originally in dataset "census"
cdate = cdate(:);
pop = pop(:);

h_ = line(cdate,pop, 'Parent',ax_, 'Color',[0.333333 0 0.666667],...
'LineStyle', 'none', 'LineWidth',1,...
'Marker',"'.', 'MarkerSize',12);

xlim_(1) = min(x1lim_(1),min(cdate));

x1lim_(2) = max(xlim_(2),max(cdate));

legh_(end+1) = h_;

legt_{end+1} = 'census';

The next component “nudges” the x-axis limits, leaving a space of 1% of the x
data range between the data and the vertical axes. This gives a tight plot,
while preventing data from being plotted directly onto the vertical axes, where
it would be difficult to see.

% Nudge axis limits beyond data limits

if all(isfinite(xlim_))
xlim_ = xlim_ + [-1 1] * 0.01 * diff(x1lim_);
set(ax_, 'XLim',x1im_)

end

After all of the preliminaries, the M-file gets down to the business of fitting

the data. The next component of the M-file uses fitoptions and fittype to
create a fit options structure fo_ and a fittype object ft_that encapsulate,
respectively, information on the fitting method and the model. The inputs to
fitoptions and fittype are read from the Fitting GUI in the Curve Fitting

Tool.
% --- Create fit "censusfit"
fo_ = fitoptions('method', 'NonlinearLeastSquares', 'Lower',[0 O]);
ok_ = ~(isnan(cdate) | isnan(pop));
st_ =[111];

3-30

Interactive Code Generation

set(fo_, 'Startpoint',st_);

ft_ = fittype('a*(x-b)"3',...
"dependent',{'y'}, 'independent',{'x"'},...
‘coefficients',{'a', 'b'});

The fit method is then called to fit the predefined fit type to the input data.
Note that NaNs are removed from the data before the fit, using the logical
vector ok_ defined in the previous component.

% Fit this model using new data
cf_ = fit(cdate(ok_),pop(ok_),ft_,fo_);

The next component of the M-file is a little obscure, since it uses a conditional
with a guard condition that is always false (0). This code is generated
intentionally, to give you the option of plotting the new input data against a
fit based on the old data (the data that was originally imported into the Curve
Fitting Tool). To do so, simply change the 0 to true. The modified M-file then
uses the cfit method to set the coefficients of the cfit object cf_ to the
stored values computed with the old data. If you do not wish to do this, leave
this component of the M-file alone, or delete it.

% Or use coefficients from the original fit:

if 0
cv_ = {1.359437793879e-005, 1724.696932124};
cf_ = cfit(ft_,cv_{:});

end

With the fitting complete, the M-file calls the plot method to plot the cfit
object cf_. Note that plot is called with the default plot type 'fit' (data
and fit), but is also passed a confidence level of 0.95. To use this confidence
level to plot prediction bounds for the fit or for new observations, change
'fit' to 'predfunc' or 'predobs', respectively. The rest of the code in this
component of the M-file is more Handle Graphics, along the lines of previous
components, setting Handle Graphics object properties that mimic the plot
of the fit in the Curve Fitting Tool.

% Plot this fit

h_ = plot(cf_,'fit',0.95);

legend off; % turn off legend from plot method call
set(h_(1),'Color',[1 O O],...

3-31

3 Programmatic Curve Fitting

3-32

'LineStyle','-"', 'LineWidth',2,...
'Marker', 'none', 'MarkerSize',6);
legh_(end+1) h_(1);
legt _{end+1} = 'censusfit';

Finally, the M-file takes care of “loose ends”: hold is toggled off to its default
behavior, the legend is positioned, and the x and y labels ('x' and 'y' by
default) are removed.

% Done plotting data and fits. Now finish up loose ends.
hold off;

h_ = legend(ax_,legh_,legt ,'Location', 'NorthEast');
set(h_, 'Interpreter', 'none');

xlabel(ax_,"'"'); % remove x label
ylabel(ax_,"'"); % remove y label

Modifying the Code

With an understanding of the components of the generated M-file, it is easy
to modify the code to produce a customized curve fit and display. The basic
structure of the M-file is already in place for you, and you can concentrate on
the details that interest you most.

A natural modification of the M-file would be to edit the function declaration
at the top of the file to return the cfit object cf_ created by the fit, as follows:

function cf_ = myfit2(cdate,pop)

Note the change in the function name from myfit to myfit2. The modified
M-file should then be saved to a file named myfit2.m.

You might also want to return goodness-of-fit statistics, which the M-file, by
default, does not compute. You would have to modify both the call to fit:

[cf_,gof] = fit(cdate(ok_),pop(ok_),ft_,fo_);
and the function declaration:
function [cf_,gof] = myfit2(cdate,pop)

You might also want to alter the call to plot, say to show prediction intervals
for new observations:

Interactive Code Generation

h_ = plot(cf_, 'predobs',0.95);

Running the M-file with the above modifications on the new data from
“Running the Generated M-file” on page 3-27 produces the following output
to the command line:

[c,g9] = myfit2(cdate,newpop)

C =
General model:
c(x) = a*(x-b)"3
Coefficients (with 95% confidence bounds):
a= 7.211e-006 (-2.389e-006, 1.681e-005)
b = 1670 (1548, 1792)
g =

sse: 5.5691e+004
rsquare: 0.6561
dfe: 19
adjrsquare: 0.6380
rmse: 54.1398

and the following display:

400 — . . .
* Census

300

censusfit

200

100

_200 1 1 1 1
1800 1850 1900 1950

3-33

3 Programmatic Curve Fitting

3-34

Functions — By Category

Preprocessing Data (p. 4-2)
Fitting Data (p. 4-2)

Curve Fit Methods (p. 4-2)
Fit Type Methods (p. 4-3)
Postprocessing Fits (p. 4-4)
Information and Help (p. 4-5)

Prepare data for fitting

Fit models to data

Methods for cfit objects
Methods for fittype objects
Analyze fit results

Information on models and objects

4 Functions — By Category

Preprocessing Data

Fitting Data

cftool
excludedata

smooth

cftool

fit
fitoptions
fittype
get

set

Curve Fit Methods

argnames

category

cfit

coeffnames

coeffvalues

confint

Open Curve Fitting Tool
Exclude data from fit

Smooth response data

Open Curve Fitting Tool

Fit a model to data

Create or modify fit options structure
Constructor for fittype object

Get fit options structure field names
and values

Assign values in fit options structure

Input argument names of cfit or
fittype object

Category of fit of cfit or fittype
object

Constructor for cfit object

Coefficient names of cfit or fittype
object

Coefficient values of cfit object

Confidence intervals for fit
coefficients of cfit object

Fit Type Methods

dependnames

differentiate
feval
formula

indepnames

integrate

islinear
numargs
numcoeffs

plot
predint

probnames
probvalues

type

Fit Type Methods

argnames
category

coeffnames

Dependent variable of cfit or
fittype object

Differentiate cfit object
Evaluate cfit or fittype object
Formula of cfit or fittype object

Independent variable of cfit or
fittype object

Integrate cfit object

Determine if cfit or fittype object
is linear

Number of input arguments of cfit
or fittype object

Number of coefficients of cfit or
fittype object

Plot cfit object
Prediction intervals for cfit object

Problem-dependent parameter
names of cfit or fittype object

Problem-dependent parameter
values of cfit or fittype object

Name of cfit or fittype object

Input argument names of cfit or
fittype object

Category of fit of cfit or fittype
object

Coefficient names of cfit or fittype
object

4 Functions — By Category

dependnames

feval
fittype
formula

indepnames
islinear
numargs
numcoeffs
probnames

probvalues

type

Postprocessing Fits

cfit
cftool
coeffvalues

confint

differentiate
integrate

plot

Dependent variable of cfit or
fittype object

Evaluate cfit or fittype object
Constructor for fittype object
Formula of cfit or fittype object

Independent variable of cfit or
fittype object

Determine if cfit or fittype object
is linear

Number of input arguments of cfit
or fittype object

Number of coefficients of cfit or
fittype object

Problem-dependent parameter
names of cfit or fittype object

Problem-dependent parameter
values of cfit or fittype object

Name of cfit or fittype object

Constructor for cfit object
Open Curve Fitting Tool
Coefficient values of cfit object

Confidence intervals for fit
coefficients of cfit object

Differentiate cfit object
Integrate cfit object
Plot cfit object

Information and Help

predint

probvalues

Information and Help

cflibhelp

datastats

Prediction intervals for cfit object

Problem-dependent parameter
values of cfit or fittype object

Information on library models

Data statistics

4 Functions — By Category

Functions — Alphabetical
List

argnames

Purpose Input argument names of cfit or fittype object
Syntax args = argnames(fun)
Description args = argnames(fun) returns the input argument (variable and

coefficient) names of the cfit or fittype object fun as an n-by-1 cell
array of strings args, where n = numargs(fun).

Example f = fittype('a*x"2+b*exp(n*x)');
nargs = numargs(f)
nargs =

args = argnames(f)
args =

See Also fittype, formula, numargs

category

Purpose Category of fit of cfit or fittype object
Syntax cname = category(fun)
Descripl‘ion cname = category(fun) returns the fit category cname of the cfit or

fittype object fun, where cname is one of 'custom', 'interpolant’,
‘library', or 'spline’.

Example f1 = fittype('a*x"2+b*exp(n*x)');
category(f1)
ans =
custom

f2 = fittype('pchipinterp');
category(f2)

ans =

interpolant

f3 = fittype('fourierd4');
category(f3)

ans =

library

f4 = fittype('smoothingspline');
category(f4)

ans =

spline

See Also fittype, type, cflibhelp

cfit

Purpose
Syntax

Description

Example

See Also

Constructor for cfit object

cfun = cfit(ffun,coeff1,coeff2,...)

cfun = cfit(ffun,coeff1,coeff2,...) constructs the cfit object
cfun using the model type specified by the fittype object ffun and the
coefficient values coeff1, coeff2, ete.

Note cfit is called by the fit function when fitting fittype objects to
data. To create a cfit object that is the result of a regression, use fit.

You should only call cfit directly if you want to assign values to
coefficients and problem parameters of a fittype object without
performing a fit.

f = fittype('a*x"2+b*exp(n*x)"')

General model:
f(a,b,n,x) = a*x"2+b*exp(n*x)
¢ = cfit(f,1,10.3,-1e2)

General model:
c(x) = a*x"2+b*exp(n*x)

Coefficients:
a = 1
b = 10.3
n = -100

fit, fittype

cflibhelp

Purpose

Syntax

Description

Information on library models

cflibhelp

cflibhelp libtype

cflibhelp displays the names, equations, and descriptions of all models
in the curve-fitting library. Library names are used as input arguments
in the fit and fittype functions.

cflibhelp libtype restricts the display of names, equations, and
descriptions to the subcategory of library models 1ibtype. Recognized
library types are listed in the table below.

libtype Description

distribution Probability distribution models

exponential One-term and two-term exponential models

fourier Fourier polynomial models

gaussian Sums of Gaussian models, up to eight terms

interpolant Interpolating models, including linear, nearest
neighbor, cubic spline, and shape-preserving
cubic spline

polynomial Polynomial models, up to ninth degree

power One-term and two-term power models

rational Ratios of polynomial models, up to degree 5 in
both the numerator and the denominator

sin Sums of sinusoidal models, up to eight terms

spline Cubic spline and smoothing spline models

For more information on library models, refer to the “Library Models”
on page 2-59 section of the User’s Guide.

cflibhelp

Example cflibhelp polynomial

POLYNOMIAL MODELS

MODELNAME EQUATION
poly1 Y = p1*x+p2
poly2 Y = p1*x"2+p2*x+p3
poly3 Y = p1*x"3+p2*x~2+..
poly9 Y = p1*x"9+p2*x"8+

See Also fit, fittype

.+p4

...+p10

cftool

Purpose

Syntax

Description

Remarks

Open Curve Fitting Tool

cftool
cftool(xdata,ydata)
cftool(xdata,ydata,w)

cftool opens the Curve Fitting Tool, an interactive environment for
fitting curves to one-dimensional data.

cftool(xdata,ydata) opens the Curve Fitting Tool with predictor data
xdata and response data ydata. xdata and ydata must be vectors of
the same size. Infs, NaNs, and imaginary parts of complex numbers are
ignored in the data.

cftool(xdata,ydata,w) also imports the weight vector w into the Curve
Fitting Tool for weighting data in subsequent fits. w must be the same
length as xdata and ydata.

The Curve Fitting Tool is an interactive environment presented in the
form of a graphical user interface. It allows you to

® Import data from the MATLAB workspace

¢ Explore the data graphically

® Preprocess the data for fitting using exclusion rules and smoothing
¢ Fit a variety of library or custom models to the data

® Generate relevant regression statistics

® Postprocess the fit through interpolation, extrapolation,
differentiation, and integration

¢ Export results back to the MATLAB workspace for further analysis
and visualization

The main Curve Fitting Tool interface is shown below.

cftool

]) Curve Fitting Tool =] 3
1 File Wiew Toolz Window Help
8 ®a | @
Data... Fitting... Exclude... Platting... Anahysis...
Data and Fits

250

+ popvys. cdate]
poby2

200+

160 -

100 -

50

1 1 1 1 1 1 1 1 1 | 7
1200 1820 1240 1860 1880 1800 1820 140 1960 1880

Residuals

—+— poly2

LT O e O N . Y

I I I I I I I I I L
1800 1820 1840 1860 1880 1900 1920 1940 1960 15980

Clicking the Data, Fitting, Exclude, Plotting, or Analysis buttons
opens associated GUIs, described below.

In the figure above, data was imported from the MAT-file census using
the Data GUI and fit with a quadratic polynomial using the Fitting
GUI. Residuals were displayed in the subplot by selecting View >
Residuals > Line Plot.

For a complete example that uses many of these GUIs, refer to Chapter
1, “Getting Started”.

The Data GUI
The Data GUI allows you to

¢ Import, name, preview, and delete data sets

cftool

®* Smooth data using a variety of methods

The Data GUI is shown below with the census data loaded.

Data Sets | Smggthl

Import workspace vectors:

X Data: chate 'I
Y Data: nop hd
Weights: (none) -

Data set name: Ipop vs. cdate
Create data set |

Diata sets:

iR | Rename | Delete |

Preview

g [m[.5

Close | Help |

Refer to “Importing, Viewing, and Preprocessing Data” on page 2-2 for
more information about the Data GUI.

The Fitting GUI

The Fitting GUI allows you to

® Compare coefficients and goodness of fit statistics from different

models

Fit your data using parametric or nonparametric models

Set algorithm options for nonlinear fits

Keep track of all data sets and fits in the current session

cftool

The Fitting GUI is shown below with the results of fitting the census
data with a quadratic polynomial.

EETEE—— il

Fit Editor

Mewy fit | Copy fit |

Fit Mame: Ipolyz
Data set: Ipop v, cdate 'l Exclusion rule; I(none) 'I
Type of fit: IPDIynumiaI vl [Center and scale X data

Falyniomial

linear polynomial =

cuhic polynomial
4th degree polynarmial -

Fit options. .. | [Immediate apply Cancel | Apply |

Results

|»

Linear model PolyZ:
fix] = pl¥=*2 + p2¥x + p3
Coefficients (with 95% confidence bounds):
pl = 0.006541 (0.006124, 0.006958)
pE = -23.51 (-25.08, -21.93)
p3 = 2.113e+004 (1.964e+004, 2,262e+004)

Goodness of fit:
35E: 159
R-smuare: 0.9957
Adjusted R-square: 0.99386 |
RMZE: 2.972 -

Table of Fits

Mame Data set

Falynomial

Delete fit I Save to workspace... | Tahle options... |
Close | Help |

5-10

cftool

The Exclude GUI

The Exclude GUI allows you to create exclusion rules for a data set. An
exclusion rule identifies data to be excluded while fitting. The excluded

data can be individual data points, or a section of predictor or response
data.

The Exclude GUI is shown below with the first two points of the census
data marked for exclusion.

<) Exclude =13l x|

Exclusion rule name: |exc1 Existing exlusion rules:

Exclude Point:

Select data set: Ipop Vs, cdate - Exclude graphically |

Checkto exclude point:

Index X v
M1 1790 3.9 -
|2 1800 53
miE! 1810 72 L=l
~Bxclude Section
Exclude X |<: -I Exclude X |== ~ |
Exclude ¥ [== <] Exclude Y [== =] | o e |
Create exclusion rule | Renarme | Delete |
|

The Plotting GUI

The Plotting GUI allows you to determine the data sets and fits
displayed by the Curve Fitting Tool.

The Plotting GUI is shown below with the census data and the fit
poly2 checked for display.

5-11

cftool

<) Plotting -3 x|

Plot data sets Plot fits

I Data set I Fit Data set

[V|pop vs. cdate | naky2 pop v, cdate

[poly3 pop vs. cate

[paly4 pop vs. cdate

[palys pop vs. cdate

| palys pop vs. cdate

expl pop vs. cdate

[~ Clear associated fits when clearing data sets.

o |

The Analysis GUI
The Analysis GUI allows you to

¢ Interpolate, extrapolate, differentiate, or integrate a fit
¢ Display the results of your analysis numerically or in a plot
The Analysis GUI is shown below with a numerical display of the

results of extrapolating the census data from the year 2000 to the year
2050 in 10-year increments.

5-12

cftool

Fitto analyze: |poly2 {pop vs I

Analyze at i = |2000:10:2050

[+ Evaluate fit at i
Frediction bounds:
& Maone
" Forfunction

© For new ohseration

Level | 595 %

[15t derivative at Xi
[2nd derivative at i

[Integrate to Xi
& Start from ming:i)

 Startfrom I

¥ Plotresults
V! Plot data set: pop vs. cdate

=] |
Hi Tl
2000 274,622
2010 301.824
2020 330,334
2030 360,152
2040 391.279
2050 423714
Save to workspace... | Apply | Close |

Refer to “Analyzing the Fit” on page 1-18 for an example that uses the

Analysis GUL

5-13

coeffnames

Purpose Coefficient names of cfit or fittype object
Syntax coeffs = coeffnames(fun)
Description coeffs = coeffnames(fun) returns the coefficient (parameter) names

of the cfit or fittype object fun as an n-by-1 cell array of strings
coeffs, where n = numcoeffs(fun).

Example f = fittype('a*x"2+b*exp(n*x)');
ncoeffs = numcoeffs(f)
ncoeffs =
3
coeffs
coeffs
g
Y
N

coeffnames(f)

See Also fittype, formula, numcoeffs, probnames, coeffvalues

5-14

coeffvalues

Purpose
Syntax

Description

Example

See Also

Coefficient values of cfit object

coeffvals = coeffvalues(fun)

coeffvals = coeffvalues(fun) returns the values of the coefficients
(parameters) of the cfit object fun as a 1-by-n vector coeffvals, where

n

coeffnames,confint, predint, probvalues

= numcoeffs(fun).

load census

f = fittype('poly2');
coeffnames(f)

ans =
Ip1l
Ip2I
Ip3I
formula(f)
ans =

p1*x°2 + p2*x + p3

¢ = fit(cdate,pop,f);
coeffvalues(c)
ans =

1.0e+004 *

0.0000 -0.0024

2.1130

5-15

confint

5-16

Purpose

Syntax

Description

Remarks

Example

Confidence intervals for fit coefficients of cfit object

ci = confint(fitresult)
ci confint(fitresult,level)
category(fitresult)

ci = confint(fitresult) returns 95% confidence bounds ci on the
coefficients associated with the cfit object fitresult. fitresult must
be an output from the fit function to contain the necessary information
for ci. ciis a 2-by-n array where n = numcoeffs(fitresult). The top
row of ci contains the lower bound for each coefficient; the bottom row
contains the upper bound.

ci = confint(fitresult,level) returns confidence bounds at the
confidence level specified by level. level must be between 0 and 1.
The default value of level is 0.95.

To calculate confidence bounds, confint uses R! (the inverse R factor
from QR decomposition of the Jacobian), the degrees of freedom for error,
and the root mean squared error. This information is automatically
returned by the fit function and contained within fitresult.

If coefficients are bounded and one or more of the estimates are at
their bounds, those estimates are regarded as fixed and do not have
confidence bounds.

Note that you cannot calculate confidence bounds if
category(fitresult) is 'spline' or 'interpolant'.

load census

fitresult = fit(cdate,pop, 'poly2"')
fitresult
Linear model Poly2:
fitresult(x) = p1*x"2 + p2*x + p3
Coefficients (with 95% confidence bounds):
p1 = 0.006541 (0.006124, 0.006958)
p2 = -23.51 (-25.09, -21.93)

confint

p3 = 2.113e+004 (1.964e+004, 2.262e+004)

ci = confint(fitresult,0.95)

ci =
0.0061242 -25.086 19641
0.0069581 -21.934 22618

Note that fit and confint display the confidence bounds in slightly
different formats.

See Also fit, predint

5-17

datastats

5-18

Purpose

Syntax

Description

Remarks

Example

Data statistics

xds = datastats(xdata)
[xds,yds] = datastats(xdata,ydata)

xds

datastats(xdata) returns statistics for the column vector

xdata to the structure xds. Fields in xds are listed in the table below.

Field Description

num The number of data values

max The maximum data value

min The minimum data value

mean The mean value of the data
median The median value of the data
range The range of the data

std The standard deviation of the data

[xds,yds] = datastats(xdata,ydata) returns statistics for the
column vectors xdata and ydata to the structures xds and yds,
respectively. xds and yds contain the fields listed in the table above.
xdata and ydata must be of the same size.

If xdata or ydata contains complex values, only the real parts are used
in computing the statistics. Data containing Inf or NaN are processed
using the usual MATLAB rules.

Compute statistics for the census data in census.mat:

load census

[xds,yds] = datastats(cdate,pop)

xds =

1990

datastats

min:
mean:
median:
range:
std:

num:
max:
min:
mean:
median:
range:
std:

See Also

1790
1890
1890
200
62.048

21
248.7
3.9
85.729
62.9
244.8
78.601

excludedata, smooth

5-19

dependnames

Purpose Dependent variable of cfit or fittype object
Syntax dep = dependnames(fun)
Descripl‘ion dep = dependnames(fun) returns the (single) dependent variable name
of the cfit or fittype object fun as a 1-by-1 cell array of strings dep.

Example f1 = fittype('a*x*2+b*exp(n*x)');

dep1 = dependnames(f1)

deptl =

Iyl

f2 = fittype('a*x"2+b*exp(n*x) "', 'dependent', 'power');
dep2 = dependnames(f2)
dep2 =

"power’

See Also indepnames, fittype, formula

5-20

differentiate

Purpose

Syntax

Description

Remarks

Example

Differentiate cfit object

d1 = differentiate(fun,x)
[d1,d2] = differentiate(...)

d1 = differentiate(fun,x) differentiates the cfit object fun at the
points specified by the vector x and returns the result in d1. d1is a
column vector the same length as x.

[d1,d2] = differentiate(...) also returns the second derivative in
d2. d2 is a column vector the same length as x.

For library models with closed forms, derivatives are calculated
analytically. For all other models, the first derivative is calculated using
the centered difference quotient

r_ Yx+h — Yx-h

Y oh

where x is the value at which the derivative is calculated, & is a small
number (on the order of the cube root of eps), y,,, is fun evaluated
at x+h, and y,_, is fun evaluated at x — A. The second derivative is
calculated using the expression

r_ Yarh ¥ Yu-h — 2y,
h2

y

Create a baseline sinusoidal signal:

xdata = (0:.1:2*pi)"';
y0 = sin(xdata);

Add noise to the signal:

noise = 2*y0.*randn(size(y0)); % Response-dependent
% Gaussian noise
ydata = y0 + noise;

5-21

differentiate

Fit the noisy data with a custom sinusoidal model:

f = fittype('a*sin(b*x)"');
fit1 = fit(xdata,ydata,f, 'StartPoint',[1 1]);

Find the derivatives of the fit at the predictors:

[d1,d2] = differentiate(fiti1,xdata);

Plot the data, the fit, and the derivatives:

subplot(3,1,1)

plot(fit1,xdata,ydata) % cfit plot method
subplot(3,1,2)

plot(xdata,d1,'m') % double plot method
grid on

legend('1st derivative')

subplot(3,1,3)

plot(xdata,d2,'c') % double plot method
grid on

legend('2nd derivative')

5-22

differentiate

+ data
fitted curve

1 T T T T T T
! ! : : 2nd derivative
05 ...
] O Ut S SN SR
e e
1 | | I I | |
0 1 2 3 4 5 g T

Note that derivatives can also be computed and plotted directly with
the cfit plot method, as follows:

plot(fit1,xdata,ydata,{'fit', 'derivi', 'deriv2'})

The plot method, however, does not return data on the derivatives.

5-23

differentiate

See Also fit, plot, integrate

5-24

excludedata

Purpose Exclude data from fit
Syntax outliers = excludedata(xdata,ydata,MethodName,MethodValue)
Descripl‘ion outliers = excludedata(xdata,ydata,MethodName,MethodValue)

identifies data to be excluded from a fit using the specified MethodName
and MethodValue. outliers is a logical vector, with 1 marking
predictors (xdata) to exclude and 0 marking predictors to include.
Supported MethodName and MethodValue pairs are given in the table
below.

MethodName MethodValue

"box' A four-element vector specifying the edges of a closed
box in the xy-plane, outside of which data is to be
excluded from a fit. The vector has the form [xmin
xmax ymin ymax].

'domain' A two-element vector specifying the endpoints of a
closed interval on the x-axis, outside of which data is
to be excluded from a fit. The vector has the form
[xmin xmax].

'indices' A vector of indices specifying the data points to be
excluded.
'range’ A two-element vector specifying the endpoints of a

closed interval on the y-axis, outside of which data is
to be excluded from a fit. The vector has the form
[ymin ymax].

Remarks You can combine data exclusion rules using logical operators. For
example, to exclude data inside the box [-1 1 -1 1] or outside the
domain [-2 2], use:

outliersi = excludedata(xdata,ydata,'box',[-1 1 -1 1]);
outliers2 = excludedata(xdata,ydata, 'domain',[-2 2]);
outliers = ~outlierst|outliers2;

5-25

excludedata

You can visualize the combined exclusion rule using random data:

xdata = -3 + 6*rand(1,1e4);

ydata = -3 + 6*rand(1,1e4);
plot(xdata(~outliers),ydata(~outliers),'.")
axis ([-3 3 -3 3])

axis square

3 2 0 1 2 3

Example Load the vote counts and county names for the state of Florida from
the 2000 U.S. presidential election:

load flvote2k

Use the vote counts for the two major party candidates, Bush and Gore,
as predictors for the vote counts for third-party candidate Buchanan,
and plot the scatters:

plot(bush,buchanan,'rs"')
hold on
plot(gore,buchanan, 'bo")

5-26

excludedata

legend('Bush data', 'Gore data')

3500 .

O o

O Bush data
3000 o Gore data ||
2500+ .
2000+ .
1500 F .
1000 F oo i

S o]

O
s00f S0%ED o oo 1
pOO O
0 _- 1 1 1

1 2 3 4
x10°

Assume a model where a fixed proportion of Bush or Gore voters choose
to vote for Buchanan:

f
f:

fittype({'x"'})

Linear model:
f(a,x) = a*x

Exclude the data from absentee voters, who did not use the controversial
“butterfly” ballot:

absentee = find(strcmp(counties, 'Absentee Ballots'));
nobutterfly = excludedata(bush,buchanan,'indices',absentee);

Perform a bisquare weights robust fit of the model to the two data sets,
excluding absentee voters:

bushfit = fit(bush,buchanan,f,...

5-27

excludedata

'"Exclude’ ,nobutterfly, 'Robust','on');
gorefit = fit(gore,buchanan,f,...
"Exclude’ ,nobutterfly, 'Robust','on');

Robust fits give outliers a low weight, so large residuals from a robust
fit can be used to identify the outliers:

figure
plot(bushfit,bush,buchanan,'rs', 'residuals')
hold on
plot(gorefit,gore,buchanan, 'bo', 'residuals')

3000 . . T
O O data
zero line ||

2500+

2000 q © daa
zero line

1500

1000 - .
500

0

-500 .
-1000

-1500 '

o]
x %10

The residuals in the plot above can be computed as follows:

bushres = buchanan - feval(bushfit,bush);
goreres = buchanan - feval(gorefit,gore);

Large residuals can be identified as those outside the range [-500 500]:

bushoutliers = excludedata(bush,bushres, 'range',[-500 500]);

5-28

excludedata

goreoutliers = excludedata(gore,goreres, 'range',[-500 500]);

The outliers for the two data sets correspond to the following counties:

counties(bushoutliers)
ans =

'‘Miami-Dade’

'Palm Beach'

counties(goreoutliers)
ans =
'‘Broward’
'‘Miami-Dade’
'Palm Beach'

Miami-Dade and Broward counties correspond to the largest predictor
values. Palm Beach county, the only county in the state to use the
“butterfly” ballot, corresponds to the largest residual values.

See Also fit, fitoptions

5-29

feval

5-30

Purpose

Syntax

Description

Remarks

Example

Evaluate cfit or fittype object

f = feval(cfun,x)
f = feval(ffun,coeffi,coeff2,...,x)
f = feval(cfun,x) evaluates the cfit object cfun at the predictor

values in the column vector x and returns the response values in the
column vector f.

f = feval(ffun,coeff1,coeff2,...,x) assigns the coefficients
coeff1, coeff2, etc. to the fittype object ffun, evaluates it at the
predictor values in the column vector x, and returns the response values
in the column vector f. ffun cannot be a cfit object in this syntax. To
evaluate cfit objects, use the first syntax.

cfit or fittype objects fun can also be evaluated directly using the
following syntax.

f = cfun(x) % cfit objects;
f ffun(coefl,coef2,...,x) % fittype objects;

= fittype('a*x"2+b*exp(n*x)"');
= cfit(f,1,10.3,-1e2);
rand(2)

X X O —h
1}

0.0579 0.8132
0.3529 0.0099

feval(f,1,10.3,-1e2,X)
ans =
0.0349 0.6612
0.1245 3.8422
f(1,10.3,-1e2,X)
ans =
0.0349 0.6612
0.1245 3.8422

feval

feval(c,X)
ans =
.0349
.1245
.6612
.8422

W o oo |

o

QO
S5~
n X

.0349
.1245
.6612
.8422

W o o ol

See Also fit, fittype

5-31

fit

5-32

Purpose

Syntax

Description

Fit a model to data

cfun = fit(xdata,ydata,libname)

cfun = fit(...,PropertyName,PropertyValue,...)
cfun = fit(xdata,ydata,libname,options)

cfun = fit(xdata,ydata,ffun,...)

cfun = fit(..., ' 'problem',values)

[cfun,gof] = fit(...)
[cfun,gof,output] = fit(...)

cfun = fit(xdata,ydata,libname) fits the data in the column vectors
xdata and ydata with the library model specified by 1ibname. xdata
and ydata cannot contain Inf or NaN. Only the real parts of complex
data are used in the fit. You can display library model names with the
cflibhelp function. The fit result is returned as a cfit object cfun.

cfun = fit(...,PropertyName,PropertyVvalue,...) fits the data
using specified property name/value pairs. You can display the
supported property names and values for specific library models with
the fitoptions function.

cfun = fit(xdata,ydata,libname,options) fits the data using the
options specified by the fit options structure options. Fit options
structures are created with the fitoptions function.

cfun = fit(xdata,ydata,ffun,...) fits the data with the fittype
object ffun. fittype objects are created with the fittype function.

cfun = fit(...,'problem',values) assigns values to the
problem-dependent parameters of the model before fitting. values is a
scalar or a cell array with one element per parameter.

[cfun,gof] = fit(...) returns goodness-of-fit statistics to the
structure gof. The gof structure has the fields shown in the table below.

Field Value
sse Sum of squares due to error
rsquare Coefficient of determination

fit

Field

Value

dfe

Degrees of freedom

adjrsquare

Degree-of-freedom adjusted coefficient of

determination
rmse Root mean squared error (standard error)
[cfun,gof,output] = fit(...) returns the structure output, which

contains information associated with the fitting algorithm. Fields
depend on the algorithm. For example, the output structure for
nonlinear least squares algorithms has the fields shown in the table

below.

Field Value

numobs Number of observations (response values)

numparam Number of unknown parameters (coefficients)
to fit

residuals Vector of residuals

Jacobian Jacobian matrix

exitflag Describes the exit condition of the algorithm.
Positive flags indicate convergence, within
tolerances. Zero flags indicate that the
maximum number of function evaluations
or iterations was exceeded. Negative flags
indicate that the algorithm did not converge
to a solution.

iterations Number of iterations

funcCount Number of function evaluations

firstorderopt Measure of first-order optimality (absolute
maximum of gradient components)

algorithm Fitting algorithm employed

5-33

fit

5-34

Remarks

Example

For some nonlinear library models (rational and Weibull), and all
custom nonlinear models, default initial values for coefficients are
selected uniformly at random from the interval (0,1). As a result,
multiple fits using the same data and model may lead to different fitted
coefficients. To avoid this, initial values for coefficients can be specified
through a fitoptions structure or a vector value for the StartPoint
property. Alternatively, initial states for the random number generators
rand and randn can be set before fitting.

All other nonlinear library models automatically compute reasonable
initial values. These initial values depend on the data, and are based on
model-specific heuristics.

Load and plot the data in census.mat:

load census
plot(cdate,pop,'0o"')
hold on

250

200 © .

150+ o 4

100t @ .

501 o -

0 [o0] o© © 1 1 1
1750 1500 1850 1900 1950 2000

fit

Create a fit options structure and a fittype object for the custom
nonlinear model y = a(x—b)", where a and b are coefficients and n is
a problem-dependent parameter:

s = fitoptions('Method', 'NonlinearLeastSquares',...
"Lower',[0,0],...
"Upper',[Inf,max(cdate)],...
'Startpoint’,[1 1]);

f = fittype('a*(x-b)"n', 'problem','n', 'options',s);

Fit the data using the fit options and a value of n = 2:

[c2,g0f2] = fit(cdate,pop,f, ' 'problem',2)

c2 =
General model:
c2(x) = a*(x-b)"n
Coefficients (with 95% confidence bounds):
a = 0.006092 (0.005743, 0.006441)
b = 1789 (1784, 1793)
Problem parameters:
n = 2
gof2 =

sse: 246.1543
rsquare: 0.9980

dfe: 19
adjrsquare: 0.9979
rmse: 3.5994

Fit the data using the fit options and a value of n = 3:

[c3,90f3] = fit(cdate,pop,f, 'problem',3)
c3 =
General model:
c3(x) = a*(x-b)"n
Coefficients (with 95% confidence bounds):
a = 1.359e-005 (1.245e-005, 1.474e-005)
b = 1725 (1718, 1731)
Problem parameters:

5-35

fit

n = 3

sse: 232.0058
rsquare: 0.9981
dfe: 19
adjrsquare: 0.9980

rmse: 3.4944

Plot the fit results with the data:

plot(c2,'m")
plot(c3,'c')

300 . T T .
fited curve
fitted curve

250+

200¢

= 150}

100+

S0 ¢ rel -

.
i *“C‘J):‘M/d

0 1 1 1
1750 1800 1850 1800 1850 2000

See Also cflibhelp, fitoptions, fittype, plot

5-36

fitoptions

Purpose

Syntax

Description

Create or modify fit options structure

options = fitoptions

options = fitoptions(model)
options = fitoptions(model,fieldnamel,valuel,fieldname2,
value2,...)

options = fitoptions('Method',method)
options = fitoptions('Method',method,fieldnamel,valuet,

fieldname2,value2,...)
newoptions = fitoptions(options,fieldnamel,valuel,fieldname2,
value2,...)

newoptions = fitoptions(options1,options2)

options = fitoptions creates the default fit options structure
options. Fields in the options structure, listed in the table below with
their default values, are supported by all fitting methods.

Field Name Values

Normalize Specifies whether the data is centered and scaled.
Values are 'off' or 'on'. The defaultis 'off'.

Exclude A logical vector indicating data points to exclude
from the fit. The excludedata function can be used
to create this vector. The default is empty.

Weights A vector of weights the same size as the response
data. The default is empty.

Method The fitting method. A complete list of supported
fitting methods is given below. The default is
‘None'.

options = fitoptions(model) creates the default fit options structure
for the library or custom model specified by the string model. You can
display library model names with the cflibhelp function.

5-37

fitoptions

options =
fitoptions(model,fieldnamel,valuel,fieldname2,value2,...)
creates a fit options structure for the specified model with the fields
specified by the strings fieldnamei, fieldname2, ... set to the
values value1, value2, ... , respectively.

options = fitoptions('Method',method) creates the default fit
options structure for the fitting method specified by the string method.
Supported fitting methods are listed in the table below.

method Description

'NearestInterpolant' Nearest neighbor interpolation
'LinearInterpolant' Linear interpolation
'"PchipInterpolant’ Piecewise cubic Hermite interpolation

'CubicSplineInterpolant' | Cubic spline interpolation

'SmoothingSpline’ Smoothing spline

'LinearLeastSquares' Linear least squares

'NonlinearlLeastSquares' | Nonlinear least squares

options =

fitoptions('Method',method,fieldnamel,valuel,fieldname2,value?2,...

creates the default fit options structure for the fitting method specified
by the string method with the fields specified by the strings fieldname1,

fieldname2, ... set to the values value1l, value2, ... , respectively.
newoptions =
fitoptions(options,fieldnamel,valuel,fieldname2,value2,...)

modifies the existing fit options structure options by setting the
fields specified by the strings fieldnamei, fieldname2, ... to
the values valuel, value2, ... , respectively. The new options
structure is returned in newoptions.

5-38

fitoptions

Remarks

newoptions = fitoptions(optionsi,options2) combines the input
fit options structures options1 and options2 to create the output fit
options structure newoptions. If the input structures have Method
fields set to the same value, the nonempty values for the fields in
options2 override the corresponding values in options1 in the output
structure. If the input structures have Method fields set to different
values, the output structure will have the same Method as optionsi,
and only the values of the Normalize, Exclude, and Weights fields of
options2 will override the corresponding values in optionsi.

Field values in a fit options structure can be referenced with the get
method and assigned with the set method. For example:

options = fitoptions('fouriert');
get(options, '‘Method')
ans =
NonlinearlLeastSquares
get(options, 'MaxIter')
ans =

400
set(options, 'Maxiter',1e3);
get(options, 'MaxIter')
ans =

1000

Field values can also be referenced and assigned using the dot notation.
For example:

options.MaxIter
ans =
1000
options.MaxIter = 500;
options.MaxIter
ans =
500

5-39

fitoptions

Additional Fit Options

Additional fields in the fit options structure, beyond the default fields
Normalize, Exclude, Weights, and Method, are available according to
the fitting method.

If the Method field has the value 'NearestInterpolant’,
‘LinearInterpolant', 'PchipInterpolant’, or
'CubicSplineInterpolant', there are no additional fields in the fit
options structure.

If the Method field has the value SmoothingSpline, the SmoothingParam
field is available to configure the smoothing parameter. Its value must
be between 0 and 1. The default value depends on the data set.

If the Method field has the value LinearLeastSquares, the additional
fields available in the fit options structure are listed in the table below.

Field Description

Robust Specifies the robust linear least squares fitting
method to be used. Values are 'on', 'off', 'LAR',
or 'Bisquare'. The default is 'off'. 'LAR'
specifies the least absolute residual method and
'Bisquare' specifies the bisquare weights method.
'on' is equivalent to 'Bisquare', the default
method.

5-40

fitoptions

Field Description

Lower A vector of lower bounds on the coefficients to

be fitted. The default value is an empty vector,
indicating that the fit is unconstrained by lower
bounds. If bounds are specified, the vector length
must equal the number of coefficients. Individual
unconstrained lower bounds can be specified by
-Inf.

Upper A vector of upper bounds on the coefficients to

be fitted. The default value is an empty vector,
indicating that the fit is unconstrained by upper
bounds. If bounds are specified, the vector length
must equal the number of coefficients. Individual
unconstrained upper bounds can be specified by Inf.

If the Method field has the value NonlinearLeastSquares, the
additional fields available in the fit options structure are listed in the
table below.

Property Description

Robust Specifies the robust linear least squares
fitting method to be used. Values are 'on',
'off', 'LAR', or 'Bisquare'. The default

is 'off'. 'LAR' specifies the least absolute
residual method and 'Bisquare' specifies the
bisquare weights method. 'on' is equivalent
to 'Bisquare', the default method.

5-41

fitoptions

Property Description

Lower A vector of lower bounds on the coefficients
to be fitted. The default value is an empty
vector, indicating that the fit is unconstrained
by lower bounds. If bounds are specified,

the vector length must equal the number of
coefficients. Individual unconstrained lower
bounds can be specified by -Inf.

Upper A vector of upper bounds on the coefficients
to be fitted. The default value is an empty
vector, indicating that the fit is unconstrained
by upper bounds. If bounds are specified,
the vector length must equal the number of
coefficients. Individual unconstrained upper
bounds can be specified by Inf.

StartPoint A vector of initial values for the coefficients.
The default value of StartPoint is an empty
vector. If the default value is passed to the
fit function, starting points for some library
models are determined heuristically. For other
models, the values are selected uniformly at
random on the interval (0,1).

Algorithm The algorithm used for the fitting procedure.
Values are 'Levenberg-Marquardt',
'Gauss-Newton', or 'Trust-Region'. The
default is 'Trust-Region'.

DiffMaxChange The maximum change in coefficients for finite
difference gradients. The default is 0.1.

DiffMinChange The minimum change in coefficients for finite
difference gradients. The default is 107,

5-42

fitoptions

Property Description

Display Controls the display in the command window.
'notify', the default, displays output only if
the fit does not converge. 'final' displays
only the final output. 'iter' displays output
at each iteration. 'off' displays no output.

MaxFunEvals The maximum number of evaluations of the
model allowed. The default is 600.

MaxIter The maximum number of iterations allowed
for the fit. The default is 400.

TolFun The termination tolerance on the model value.
The default is 10°6.

TolX The termination tolerance on the coefficient

values. The default is 10°6.

5-43

fitoptions

Note For the fields Upper, Lower, and StartPoint, the order of the
entries in the vector value is the order of the coefficients returned by
the coeffnames method. For example, if

f = fittype('b*x"2+c*x+a');

coeffnames(T)
ans =

g

"y

o

then setting

options.StartPoint = [1 3 5];

assigns initial values to the coefficients as follows: a = 1, b = 3,¢c =
5. Note that this is not the order of the coefficients in the expression
used to create f with fittype.

Example Create the default fit options structure and set the option to center
and scale the data before fitting:

options = fitoptions;
options.Normal = 'on';
options
options =
Normalize: 'on'
Exclude: [1x0 double]
Weights: [1x0 double]
Method: 'None'

Modifying the default fit options structure is useful when you want to
set the Normalize, Exclude, or Weights fields, and then fit your data
using the same options with different fitting methods. For example:

load census

5-44

fitoptions

1 fit(cdate,pop, 'poly3',options);
f2 = fit(cdate,pop, 'expl1',options);
3 fit(cdate,pop, 'cubicsp',options);

Data-dependent fit options are returned in the third output argument
of the fit function. For example:

[f,gof,out] = fit(cdate,pop, 'smooth');

smoothparam = out.p

smoothparam
0.0089

The default smoothing parameter can be modified for a new fit:

options = fitoptions('Method', 'Smooth',...
‘SmoothingParam',0.0098);
[f,gof,out] = fit(cdate,pop, 'smooth',options);

Example Create a noisy sum of two Gaussian peaks—one with a small width,
and one with a large width:

al = 1; bt = -1; c¢1 = 0.05;

a2 = 1; b2 = 1; c2 = 50;

X = (-10:0.02:10) ';

gdata = at*exp(-((x-b1)/ct1)."2) + ...
a2*exp(-((x-b2)/c2).72) + ...
0.1*(rand(size(x))-.5);

plot(x,gdata)

5-45

fitoptions

5-46

22 T . .

181 .

161 .

141 1

121 .

08 1 1 1
-10 -5 0 5 10

Fit the data using the two-term Gaussian library model:

f = fittype('gauss2');
gfit = fit(x,gdata,f)
gfit =
General model Gauss2:
gfit(x) = at*exp(-((x-b1)/c1)"2) +
a2*exp(-((x-b2)/c2)"2)
Coefficients (with 95% confidence bounds):

al = -0.05388 (-0.136, 0.02826)
b1 = -2.651 (-2.718, -2.584)
cl = 0.05373 (-0.04106, 0.1485)
a2 = 1.012 (1.006, 1.018)

b2 = 0.6703 (0.06681, 1.274)
c2 = 41.2 (36.54, 45.85)

The algorithm is having difficulty, as indicated by the wide confidence
intervals for some of the coefficients. To help the algorithm, we could
specify lower bounds for the nonnegative amplitudes a1, a2 and widths
c1, c2:

fitoptions

options = fitoptions('gauss2');
options.Lower = [0 -Inf O O -Inf 0];

Recompute the fit with the bound constraints on the coefficients:

gfit = fit(x,gdata,ftype,options)
gfit =
General model Gauss2:
gfit(x) = at*exp(-((x-b1)/c1)"2) +
a2*exp(-((x-b2)/c2)"~2)
Coefficients (with 95% confidence bounds):

al = 1.003 (0.9641, 1.042)

b1 = -1 (-1.002, -0.9987)
cl = 0.04972 (0.04748, 0.05197)
a2 = 1.002 (0.999, 1.004)

b2 = 1.136 (0.725, 1.547)

c2 = 48.89 (45.32, 52.47)

This is a much better fit. The fit can be further improved by assigning
reasonable values to other fields in the fit options structure.

See Also cflibhelp, fit, get, set

5-47

fittype

5-48

Purpose

Syntax

Description

Constructor for fittype object

ffun = fittype(libname)

ffun = fittype(expr)

ffun = fittype({expri,expr2,...,exprn})

ffun = fittype(expr,PropertyName,PropertyValue,...)
ffun = fittype({expri,expr2,...,exprn},PropertyName,

PropertyValue,...)

ffun = fittype(libname) constructs the fittype object ffun for the
library model specified by 1ibname. You can display library model
names with the cflibhelp function.

ffun = fittype(expr) constructs the fittype object ffun for the
custom nonlinear model specified by the expression in the string expr.
By default, the independent variable is assumed to be x and the
dependent variable is assumed to be y. All other variables are assumed
to be coefficients. All coefficients must be scalars.

ffun = fittype({expri,expr2,...,exprn}) constructs the fittype
object ffun for the custom linear model with terms specified by the
expressions in the strings expri, expr2, ... , exprn. Coefficients are not
included in the expressions for the terms. If there is a constant term,
use '1' as the corresponding expression in the cell array.

Note islinear assumes that all models specified with the syntax
ffun = fittype(expr) are nonlinear models. To create a linear
model with fittype that will be recognized as linear by islinear
(and, importantly, by the algorithms of fit), use the syntax ffun =
fittype({expri,expr2,...,exprn}).

ffun = fittype(expr,PropertyName,Propertyvalue,...) or ffun =

fittype({expri,expr2,...,exprn},PropertyName,PropertyVvalue,...

constructs the fittype object ffun using specified property
name/value pairs. Supported property names and values are given
in the table below.

fittype

Example

See Also

Name Value

'coefficients' The coefficient names. Use a cell array if there
are multiple names.

'dependent’ The dependent (response) variable name

'independent' The independent (predictor) variable name

'options' The default fit options for the object

'problem' The problem-dependent (fixed) parameter

names. Use a cell array if there are multiple
names. The default is none.

Construct a fittype object for the rat33 library model:

= fittype('rat33')

General model Rat33:
f(p1,p2,p3,p4,91,92,93,x) = (p1*x"3 + p2*x"2 + p3*x + p4)/
(x*3 + gq1*x"2 + g2*x + q3)

1:
1:

Construct a fittype object for a custom nonlinear model, designating n
as a problem-dependent parameter and u as the independent variable:

g = fittype('a*u+b*exp(n*u)','problem','n', 'independent','u')
g:
General model:
g(a)b)n,u) = a*u+b*exp(n*u)

Construct a fittype object for a custom linear model, specifying the
names of the coefficients:

h = fittype({'cos(x)','1'},'coefficients',{'a1','a2'})
h:
Linear model:

h(al,a2,x) = al*cos(x) + a2

fit, cfit

5-49

formula

Purpose
Syntax

Description

Example

See Also

5-50

Formula of cfit or fittype object
formula(fun)

formula(fun) returns the formula of the cfit or fittype object fun
as a character array.

f = fittype('weibull');
formula(f)

ans =

a*b*x” (b-1)*exp(-a*x"~h)

g = fittype('cubicspline');
formula(g)

ans =

piecewise polynomial

fittype, coeffnames, numcoeffs, probnames, coeffvalues

get

Purpose

Syntax

Description

Example

Get fit options structure field names and values

get(options)
s = get(options)
value = get(options,fieldname)

get(options) displays all field names and values of the fit options
structure options.

s = get(options) returns a copy of the fit options structure options
as the structure s.

value = get(options,fieldname) returns the value of the field
fieldname of the fit options structure options. fieldname can be a cell
array of strings, in which case value is also a cell array.

options = fitoptions('fouriert');
get(options, '‘Method')
ans =
NonlinearlLeastSquares
get(options, 'MaxIter')
ans =

400
set(options, 'Maxiter',1e3);
get(options, 'MaxIter')
ans =

1000

Field values can also be referenced and assigned using the dot notation.
For example:

options.MaxIter
ans =
1000
options.MaxIter = 500;
options.MaxIter
ans =
500

5-51

get

See Also fitoptions, set

5-52

indepnames

Purpose
Syntax

Description

Example

See Also

Independent variable of cfit or fittype object
indep = indepnames(fun)

indep = indepnames(fun) returns the (single) independent variable
name of the cfit or fittype object fun as a 1-by-1 cell array of strings
indep.

f1 = fittype('a*x"2+b*exp(n*x)"');
indep1 = indepnames(f1)
indep1 =

IXI
f2 = fittype('a*x"2+b*exp(n*x) "', 'independent’','n');
indep2 = indepnames(f2)
indep2 =

Inl

dependnames, fittype, formula

5-53

integrate

5-54

Purpose
Syntax

Description

Example

Integrate cfit object
int = integrate(fun,x,x0)

int = integrate(fun,x,x0) integrates the cfit object fun at the
points specified by the vector x, starting from x0, and returns the result
in int. int is a vector the same size as x. x0 is a scalar.

Create a baseline sinusoidal signal:

xdata = (0:.1:2*pi)"';
y0 = sin(xdata);

Add noise to the signal:

noise = 2*y0.*randn(size(y0)); % Response-dependent
% Gaussian noise

ydata y0 + noise;

Fit the noisy data with a custom sinusoidal model:

f = fittype('a*sin(b*x)"');
fit1 = fit(xdata,ydata,f,'StartPoint',[1 1]);

Find the integral of the fit at the predictors:

int = integrate(fiti,xdata,0);

Plot the data, the fit, and the integral:

subplot(2,1,1)

plot(fiti1,xdata,ydata) % cfit plot method
subplot(2,1,2)

plot(xdata,int,'m') % double plot method
grid on

legend('integral')

integrate

+ data |
+ + + fited curve

0 1 2 3 4 5 5 7

Note that integrals can also be computed and plotted directly with the
cfit plot method, as follows:

plot(fiti1,xdata,ydata,{'fit', 'integral'})
The plot method, however, does not return data on the integral.

See Also fit, plot, differentiate

5-55

islinear

Purpose Determine if cfit or fittype object is linear
Syntax flag = islinear(fun)
Description flag = islinear(fun) returns a flag of 1 if the cfit or fittype

object fun represents a linear model, and a flag of 0 if it does not.

Note islinear assumes that all custom models specified by the
fittype function using the syntax ftype = fittype('expr')
are nonlinear models. To create a linear model with

fittype that will be recognized as linear by islinear (and,
importantly, by the algorithms of fit), use the syntax ftype =
fittype({'expri','expr2',...,"'exprn'}).

Example

—+
I

fittype('a*x+b')

General model:
f(a,b,x) = a*x+b

g = fittype({'x","1'})

Linear model:
g(a,b,x) = a*x + b

h = fittype('polyl')

h =
Linear model Polyft:
h(p1,p2,x) = p1*x + p2
islinear(f)
ans =
0
islinear(g)
ans =

5-56

islinear

1
islinear(h)
ans =

1

See Also fittype

5-57

numargs

Purpose Number of input arguments of cfit or fittype object
Syntax nargs = numargs(fun)
Description nargs = numargs(fun) returns the number of input arguments nargs

of the cfit or fittype object fun.

Example f = fittype('a*x"2+b*exp(n*x)');
nargs = numargs(f)
nargs =

args = argnames(f)
args

See Also fittype, formula, argnames

5-58

numcoeffs

Purpose Number of coefficients of cfit or fittype object
Syntax ncoeffs = numcoeffs(fun)
Description ncoeffs = numcoeffs(fun) returns the number of coefficients ncoeffs

of the cfit or fittype object fun.

Example f = fittype('a*x"2+b*exp(n*x)');
ncoeffs = numcoeffs(f)

ncoeffs

3

coeffs = coeffnames(T)

coeffs

g

Y

N

See Also fittype, formula, coeffnames

5-59

plot

5-60

Purpose

Syntax

Description

Plot cfit object

plot(fun)

plot(fun,xdata,ydata)
plot(fun,xdata,ydata,DataLineSpec)
plot(fun,FitLineSpec,xdata,ydata,DataLineSpec)
plot(fun,xdata,ydata,outliers)
plot(fun,xdata,ydata,outliers,QutlierLineSpec)
plot(...,ptype,...)

plot(...,ptype,level)

h = plot(...)

plot(fun) plots the cfit object fun over the domain of the current
axes, if any. If there are no current axes, and fun is an output from the
fit function, the plot is over the domain of the fitted data.

plot(fun,xdata,ydata) plots fun together with the predictor data
xdata and the response data ydata.

plot(fun,xdata,ydata,DataLineSpec) plots the predictor and
response data using the color, marker symbol, and line style specified by
the DatalLineSpec formatting string. DataLineSpec strings take the
same values as LineSpec strings used by the MATLAB plot function.

plot(fun,FitLineSpec,xdata,ydata,DataLineSpec) plots fun using
the color, marker symbol, and line style specified by the FitLineSpec
formatting string, and plots xdata and ydata using the color, marker
symbol, and line style specified by the DataLineSpec formatting string.
FitLineSpec and DatalLineSpec strings take the same values as
LineSpec strings used by the MATLAB plot function.

plot(fun,xdata,ydata,outliers) plots data indicated by outliers
in a different color. outliers is a logical array the same size as xdata
and ydata. outliers can be computed with the excludedata function.

plot(fun,xdata,ydata,outliers,OutlierLineSpec) plots outliers
using the color, marker symbol, and line style specified by the
OutlierLineSpec. OutlierLineSpec strings take the same values as
LineSpec strings used by the MATLAB plot function.

plot

Example

plot(...,ptype,...) uses the plot type specified by ptype. Supported
plot types are:

e 'fit' — Data and fit (default)
e 'predfunc' — Data and fit with prediction bounds for the fit

® 'predobs' — Data and fit with prediction bounds for new
observations

e 'residuals' — Residuals

® 'stresiduals' — Standardized residuals (residuals divided by their
standard deviation).

e 'derivi' — First derivative of the fit

e 'deriv2' — Second derivative of the fit

e 'integral' — Integral of the fit

Plot types can be single or multiple, with multiple plot types specified
as a cell array of strings. With a single plot type, plot draws to the
current axes and can be used with commands like hold and subplot.
With multiple plot types, plot creates subplots for each plot type.

plot(...,ptype,level) plots prediction intervals with a confidence
level specified by level. level must be between 0 and 1. The default
value of level is 0.95.

h = plot(...) returns a vector of handles to the plotted objects.
Create a baseline sinusoidal signal:

xdata = (0:0.1:2*pi)';
y0 = sin(xdata);

Add noise to the signal with non-constant variance:

% Response-dependent Gaussian noise
gnoise = y0.*randn(size(y0));

5-61

plot

5-62

% Salt-and-pepper noise

spnoise = zeros(size(y0));

p = randperm(length(y0));

sppoints = p(1:round(length(p)/5));
spnoise(sppoints) = 5*sign(y0(sppoints));

ydata = y0 + gnoise + spnoise;

Fit the noisy data with a baseline sinusoidal model:

f = fittype('a*sin(b*x)"');
fit1 = fit(xdata,ydata,f, 'StartPoint',[1 1]);

Identify “outliers” as points at a distance greater than 1.5 standard
deviations from the baseline model, and refit the data with the outliers
excluded:

fdata = feval(fit1,xdata);
I = abs(fdata - ydata) > 1.5*std(ydata);
outliers = excludedata(xdata,ydata, 'indices',I);

fit2 = fit(xdata,ydata,f, 'StartPoint',[1 1],...
"Exclude’',outliers);

Compare the effect of excluding the outliers with the effect of giving
them lower bisquare weight in a robust fit:

fit3 = fit(xdata,ydata,f, 'StartPoint',[1 1], 'Robust','on');

Plot the data, the outliers, and the results of the fits:

plot(fittl,'r-',xdata,ydata, 'k."',outliers, 'm*")
hold on

plot(fit2,'c--")

plot(fit3,'b:")

x1im([0 2*pi])

plot

3 T . T T . T
#* + data
6L * o N * excluded data |
* #* fited curve
4l * fitted curve
--------- fitted curve

Plot the residuals for the two fits considering outliers:

figure
plot(fit2,xdata,ydata,'co', 'residuals')
hold on
plot(fit3,xdata,ydata, 'bx', 'residuals')

5-63

plot

5-64

See Also

& T T T T T T
N 2 %o data
al zeroline | |
w * o data
zero line
2r ® i
b
XX ® % w i
)
0 Ko *® Ko s Ko AR R Gk i
® w5 e
% ® x X
2 r E _
4t 8 -
XX * = W
_6 1 1 1 1 1 1
0 1 2 3 4 5 & 7
X

cftool, excludedata, fit, differentiate, integrate

predint

Purpose

Syntax

Description

Prediction intervals for cfit object

pi = predint(fitresult,x)

pi predint (fitresult,x,level)

pi predint (fitresult,x,level,intopt,simopt)
[pi,y] = predint(...)

pi = predint(fitresult,x) returns upper and lower 95% prediction
bounds for response values associated with the cfit object fitresult
at the new predictor values specified by the vector x. fitresult must
be an output from the fit function to contain the necessary information
for pi. piis an n-by-2 array where n = length(x). The left column

of pi contains the lower bound for each coefficient; the right column
contains the upper bound.

pi = predint(fitresult,x,level) returns prediction bounds with
a confidence level specified by level. level must be between 0 and 1.
The default value of level is 0.95.

pi = predint(fitresult,x,level,intopt,simopt) specifies the type
of bounds to compute.

intopt is one of

e 'observation' — Bounds for a new observation (default)

e 'functional' — Bounds for the fitted curve
simopt is one of

e 'off' — Nonsimultaneous bounds (default)

® 'on' — Simultaneous bounds

Observation bounds are wider than functional bounds because they
measure the uncertainty of predicting the fitted curve plus the random

variation in the new observation. Nonsimultaneous bounds are for
individual elements of x; simultaneous bounds are for all elements of x.

5-65

predint

5-66

Example

[pi,y] = predint(...) returns the response values y predicted by
fitresult at the predictors in x.

Generate data with an exponential trend:

X
y

(0:0.2:5)';
2*exp(-0.2*x) + 0.5*randn(size(x));

Fit the data using a single-term exponential:

fitresult = fit(x,y, 'expl');

Compute prediction intervals:

p11 = predint(fitresult,x,0.95, " 'observation', 'off');
p12 = predint(fitresult,x,0.95, 'observation','on');
p21 = predint(fitresult,x,0.95, 'functional', 'off');
p22 = predint(fitresult,x,0.95, 'functional', 'on');

Plot the data, fit, and prediction intervals:

subplot(2,2,1)

plot(fitresult,x,y), hold on, plot(x,p11,'m--'), x1im([O0 5])

title('Nonsimultaneous observation bounds', 'Color','m')
subplot(2,2,2)

plot(fitresult,x,y), hold on, plot(x,p12,'m--'), xlim([O0 5])

title('Simultaneous observation bounds', 'Color','m')
subplot(2,2,3)

plot(fitresult,x,y), hold on, plot(x,p21,'m--'), x1im([O0 5])

title('Nonsimultaneous functional bounds', 'Color','m')
subplot(2,2,4)

plot(fitresult,x,y), hold on, plot(x,p22,'m--'), x1im([O0 5])

title('Simultaneous functional bounds', 'Color','m')

predint

Monsimultaneous observation bounds

Simultaneous observation bounds

*

data

fited curve

— .

data
fitted curve |

¥ X
Monsimultaneous functional bounds Simultaneous functional bounds
25 25
\ . + data . + data
2 N fitted curve |4 21 fitted curve [{

See Also confint, fit, plot

5-67

probnames

Purpose Problem-dependent parameter names of cfit or fittype object

Syntax pnames = probnames(fun)

Description pnames = probnames(fun) returns the names of the problem-dependent
(fixed) parameters of the cfit or fittype object fun as a cell array of
strings.

Example f = fittype('(x-a)"n + b','problem',{'a','b'});

coeffnames(f)
ans =

1 n 1
probnames (f)
ans =

Ial

1 bl

load census

c = fit(cdate,pop,f, 'problem', {cdate(1),pop(1)},...
‘StartPoint',2);

coeffvalues(c)
ans =

0.9877
probvalues(c)
ans =

1.0e+003 *
1.7900 0.0039

See Also fittype, coeffnames, probvalues

5-68

probvalues

Purpose Problem-dependent parameter values of cfit or fittype object
Syntax pvals = probvalues(fun)

Desc ription pvals = probvalues(fun) returns the values of the problem-dependent
(fixed) parameters of the cfit object fun as a row vector.

Example f = fittype('(x-a)"n + b','problem',{'a','b'});
coeffnames(f)
ans =
N
probnames (f)
ans =
g
Y

load census

c = fit(cdate,pop,f, 'problem', {cdate(1),pop(1)},...
‘StartPoint',2);

coeffvalues(c)
ans =

0.9877
probvalues(c)
ans =

1.0e+003 *
1.7900 0.0039

See Also fit, fittype, probnames

5-69

set

5-70

Purpose

Syntax

Description

Example

Assign values in fit options structure

set(options)

s = set(options)
set(options,fieldnamel,valuel,fieldname2,value2,...)
set(options,fieldnames,values)

set (options) displays all field names of the fit options structure
options. If a field has a finite list of possible string values, these values
are also displayed.

s = set(options) returns a structure s with the same field names as
options. If a field has a finite list of possible string values, the value of
the field in s is a cell array containing the possible string values. If a
field does not have a finite list of possible string values, the value of the
field in s is an empty cell array.

set(options,fieldnamel,valuel,fieldname2,value2,...) sets the
fields specified by the strings fieldname1, fieldname2, ... to the values
valuel, value?2, ... , respectively.

set(options,fieldnames,values) sets the fields specified by the cell
array of strings fieldnames to the corresponding values in the cell
array values.

Create a custom nonlinear model, and create a default fit options
structure for the model:

f = fittype('a*x"2+b*exp(n*c*x)', 'problem','n");
options = fitoptions(f);

Set the Robust and Normalize fields of the fit options structure using
field name/value pairs:

set(options, 'Robust', 'LAR', 'Normalize', 'On')

Set the Display, Lower, and Algorithm fields of the fit options structure
using cell arrays of field names/values:

set

set(opts,{'Disp','Low',"'Alg'},{'Final',[0 O O], 'Levenberg'})

See Also fitoptions, get

5-71

smooth

5-72

Purpose

Syntax

Description

Smooth response data

yy =
yy =
yy =
yy =
yy =
yy =
yy =

yy =

smooth(y)

smooth(y,span)
smooth(y,method)
smooth(y,span,method)
smooth(y, 'sgolay’',degree)
smooth(y,span, 'sgolay',degree)
smooth(X,y,...)

smooth(y) smooths the data in the column vector y using a

moving average filter. Results are returned in the column vector yy.
The default span for the moving average is 5.

The first few elements of yy are given by

e~~~
~ODN =
—_— — — —

|

= y(1)

(y(1) +y(2) +y(3))/3

= (y(1) +y(2) +y(3) +y(4) +y(3))/5
(y(2) + y(3) + y(4) +y(5) +y(6))/5

Because of the way endpoints are handled, the result differs from the
result returned by the filter function.

yy =

smooth(y,span) sets the span of the moving average to span.

span must be odd.

yy =

smooth(y,method) smooths the data in y using the method

method and the default span. Supported values for method are listed in
the table below.

method Description

'moving' Moving average (default). A lowpass filter with

filter coefficients equal to the reciprocal of the
span.

smooth

method Description

'lowess' Local regression using weighted linear least
squares and a 1st degree polynomial model

'loess'’ Local regression using weighted linear least
squares and a 2nd degree polynomial model

'sgolay' Savitzky-Golay filter. A generalized moving
average with filter coefficients determined by an
unweighted linear least squares regression and a
polynomial model of specified degree (default is
2). The method can accept nonuniform predictor
data.

'rlowess' A robust version of 'lowess' that assigns lower
weight to outliers in the regression. The method
assigns zero weight to data outside six mean
absolute deviations.

'rloess' A robust version of 'loess' that assigns lower
weight to outliers in the regression. The method
assigns zero weight to data outside six mean
absolute deviations.

yy = smooth(y,span,method) sets the span of method to span. For
the loess and lowess methods, span is a percentage of the total
number of data points, less than or equal to 1. For the moving average
and Savitzky-Golay methods, span must be odd (an even span is
automatically reduced by 1).

yy = smooth(y, 'sgolay',degree) uses the Savitzky-Golay method
with polynomial degree specified by degree.

yy = smooth(y,span, 'sgolay',degree) uses the number of data
points specified by span in the Savitzky-Golay calculation. span must
be odd and degree must be less than span.

yy = smooth(x,y,...) additionally specifies x data. If x is not
provided, methods that require x data assume x = 1:1length(y).
You should specify x data when it is not uniformly spaced or sorted.

5-73

smooth

5-74

Remarks

Example

If x is not uniform and you do not specify method, lowess is used.
If the smoothing method requires x to be sorted, the sorting occurs
automatically.

Another way to generate smoothed data is to fit it with a smoothing
spline. Refer to the fit function for more information.

Load the data in count.dat:

load count.dat

The 24-by-3 array count contains traffic counts at three intersections
for each hour of the day.

First, use a moving average filter with a 5-hour span to smooth all of
the data at once (by linear index) :

¢ = smooth(count(:));
C1 = reshape(c,24,3);

Plot the original data and the smoothed data:

subplot(3,1,1)
plot(count,':");

hold on

plot(C1,'-");

title('Smooth C1 (All Data)')

Second, use the same filter to smooth each column of the data
separately:

C2 = zeros(24,3);
for I = 1:3,

C2(:,I) = smooth(count(:,I));
end

Again, plot the original data and the smoothed data:

subplot(3,1,2)

smooth

plot(count,':");

hold on

plot(C2,"-");

title('Smooth C2 (Each Column)')

Plot the difference between the two smoothed data sets:
subplot(3,1,3)

plot(C2 - C1,'0-")
title('Difference C2 - C1')

Smogth 1 (Al Data)

400 . T T .
200+ B .
,..-'-f"'—n“'\-._ E _\‘ e
O -.-" s | e
0 5 10 15 20 25
Smooth C2 {(Each Columny)
400 . T T .
2001 .
O = = = e = S —
0 5 10 15 20 25
Difference 2 - C1
10 . r : .
0 —@yﬁ“ﬁ %ﬁzfg_
10 1 1 1 1
0 5 10 15 20 25

Note the additional end effects from the 3-column smooth.

Example Create noisy data with outliers:

X 15*rand(150,1);
y sin(x) + 0.5*(rand(size(x))-0.5);
y(ceil(length(x)*rand(2,1))) = 3;

5-75

smooth

Smooth the data using the loess and rloess methods with a span

of 10%:
yy1l = smooth(x,y,0.1,'loess');
yy2 = 0.1,'rloess');

y
smooth(x,y,
Plot original data and the smoothed data.

[xx,ind] = sort(x);

subplot(2,1,1)

plot(xx,y(ind), 'b."',xx,yy1(ind),"'r-")
set(gca, 'YLim',[-1.5 3.5])

legend('Original Data', 'Smoothed Data Using '‘'loess''',...

‘Location', 'NW")
subplot(2,1,2)
plot(xx,y(ind), 'b."',xx,yy2(ind), " 'r-")
set(gca, 'YLim',[-1.5 3.5])

legend('Original Data', 'Smoothed Data Using '‘'rloess''’',...

‘Location', 'NW")

+ Original Data *

3

2 = Smoothed Data Using 'loess' .
.1 - =

1]

3 + Original Data *

2 Fl— Smoothed Data Using 'flogss' 7
1 ¥ :

0

0 5 10 15

Note that the outliers have less influence on the robust method.

5-76

smooth

See Also fit, sort

5-77

type

Purpose Name of cfit or fittype object
Syntax name = type(fun)

Description name = type(fun) returns the custom or library name name of the cfit
or fittype object fun as a character array.

Example f = fittype('a*x"2+b*exp(n*x)');
category(f)
ans =
custom
type(f)
ans =
customnonlinear

g = fittype('fourierd');
category(g)

ans =

library

type(9)

ans =

fourier4

See Also fittype, category, cflibhelp

5-78

A

adjusted R-square 2-76

adjusted residuals 2-55

algorithms 2-58

Analysis GUI
census data example 1-18
description 5-12

argnames 5-2

axes limit control
census data example 1-13
nonparametric fit example 2-122

backslash operator 2-52
best fit 1-11
bisquare weights
robust fitting 2-55
robust smoothing 2-19
bounds
confidence
census data example 1-16
definition 2-77
prediction
definition 2-77
goodness of fit example 2-83

C

carboni2alpha data set 2-93
category 5-3
census data example 1-5
center and scale 1-11
cfit 54
cflibhelp 5-5
cftool 5-7
coefficient
confidence bounds 2-78

constraints
Fit Options GUI 2-67
Fourier series example 2-100
Gaussian example 2-108
starting values
Fit Options GUI 2-67
Gaussian example 2-108
structure
piecewise polynomials 2-121
coefficient of multiple determination 2-75
coeffnames 5-14
coeffvalues 5-15
complex data
importing 2-3
confidence bounds
census data example 1-16
definition 2-77
Legendre polynomial example 2-97
confint 5-16
constraints
Fit Options GUI 2-67
Fourier series example 2-100
Gaussian example 2-108
covariance matrix of coefficient estimates 2-80
Create Custom Equation GUI
definition 2-64
Legendre polynomial example 2-93
cubic spline interpolation 2-116
curve fitting session
saving custom equations 2-64
saving fit results 1-20
Curve Fitting Tool 5-7
description 5-7
Fourier series example 2-102
Gaussian example 2-107
Legendre polynomial example 2-97
nonparametric fit example 2-122
prediction bounds 2-85
rational example 2-90
residuals 2-84

Index-1

Index

robust fit example 2-113
starting 1-4
custom equations
definition 2-64
general
Fourier series example 2-99
Gaussian example 2-105
robust fit example 2-109
linear
Legendre polynomial example 2-93
robust fitting example 2-109
saving 2-64

D

data 2-44 2-109
excluding 2-26
fitting procedure
census data example 1-7
general steps 2-44
importing 1-5
quality 2-48
sectioning 2-26
smoothing 2-9
statistics 5-18
See also predictor data, response data
Data GUI
Data Sets pane 2-2
description 5-8
Smooth pane 2-11
data sets
deleting 2-4
enso 2-99
flvote2k 2-109
gauss3 2-105
hahn1 2-87
importing 2-2
renaming 2-4
Data Sets pane
census data example 1-6

Index-2

description 2-2
data tips

robust fit example 2-113
datastats 5-18
default

coefficient parameters

fit options 2-70

confidence level for bounds 2-79

smoothing parameter 2-119
degrees of freedom 2-76
deleting

data sets 2-4

exclusion rules 2-27
dependnames 5-20
design matrix 2-51
determining the best fit 1-11
differentiate 3-18 5-21

enso data set 2-99
equations
custom 2-64
library 2-59
error distribution 2-48
error sum of squares 2-75
evaluating the goodness of fit
available measures 2-71
example 2-83
examples
evaluating the goodness of fit 2-83
excluding and sectioning data 2-33
Fourier series fit 2-99
Gaussian fit 2-105
importing data 2-4
Legendre polynomial fit 2-93
nonparametric fit 2-120
rational fit 2-87
robust fit 2-109
sectioning periodic data 2-36

Index

smoothing data 2-22
Exclude GUI

description 2-27 5-11

example 2-35

robust fit example 2-112
excludedata 3-12 3-16 5-25
excluding data

example 2-33

marking outliers 2-28

sectioning 2-31
exclusion rule

definition 2-26

robust fitting example 2-112
exponentials

fit type definition 2-59
extrapolation

census data example 1-18

F

feval 3-12 5-30
filtering data
moving average 2-13
Savitzky-Golay 2-20
finite differencing parameters 2-68
fit 3-12 3-15 to 3-16 5-32
fit convergence criteria 2-69
Fit Editor
census data example 1-7
Legendre polynomial example 2-95
nonparametric fit example 2-120
robust fit example 2-113
Fit Options GUI
description 2-67
Fourier series example 2-100
Gaussian example 2-108
fitoptions 3-15 5-37
fitting
algorithms 2-58
fit options 2-67

least squares method
definition 2-49
linear 2-50
nonlinear 2-57
nonparametric 2-116
numerical results 1-14
parametric 2-46
procedure
census data example 1-7
general steps 2-44
visual results 1-11
Fitting GUI
census data example 1-9
description 5-9
Fit Editor 1-7
fitting process 2-44
nonparametric fit example 2-120
numerical fit results 1-14
robust fit example 2-113
Table of Fits 1-7
fittype 3-12 3-16 5-48
flvote2k data set 2-109
formula 5-50
Fourier series
example 2-99
fit type definition 2-60
functions
argnames 5-2
category 5-3
cfit 54
cflibhelp 5-5
cftool 5-7
coeffnames 5-14
coeffvalues 5-15
confint 5-16
datastats 5-18
dependnames 5-20
differentiate 3-18 5-21
excludedata 3-12 3-16 5-25
feval 3-12 5-30

Index-3

Index

fit 3-12 3-15 to 3-16 5-32
fitoptions 3-15 5-37
fittype 3-12 3-16 5-48
formula 5-50

get 5-51

indepnames 5-53
integrate 3-18 5-54
islinear 5-56

numargs 5-58
numcoeffs 5-59

plot 3-16 3-22 5-60
predint 3-22 5-65
probnames 5-68
probvalues 5-69

set 5-70

smooth 3-10 to 3-11 5-72
type 5-78

G

Gauss-Newton algorithm 2-58
gauss3 data set 2-105
Gaussian
error distribution 2-48
example 2-105
fit type definition 2-60
general equations 2-66
General Equations pane
description 2-66
Fourier series example 2-100
Gaussian example 2-105
generating an M-file 1-21 3-24
get 5-51
goodness of fit
available measures 2-71
census data example 1-11
statistics 2-74
graphically viewing data 2-6
GUI

Index-4

Analysis
census data example 1-18
description 5-12
Create Custom Equation
definition 2-64
Legendre polynomial example 2-93
Curve Fitting Tool
description 5-7
Data 2-2
description 5-8
Exclude 2-27
description 5-11
Fit Options
description 2-67
Fourier series example 2-100
Gaussian example 2-108
Fitting
census data example 1-9
description 5-9
Legendre polynomial example 2-95
nonparametric fit example 2-120
rational example 2-89
robust fit example 2-113
Plotting
census data example 1-20
description 5-11
smoothing data example 2-25
Table Options
census data example 1-14
goodness of fit evaluation 2-85

H

hahn1 data set 2-87
hat matrix 2-53

|
importing data 1-5
description 2-2

Index

example 2-4
indepnames 5-53
influential data 2-30
Infs

importing 2-3

removing 2-42
integrate 3-18 5-54
interpolants 2-116
islinear 5-56

iteratively reweighted least squares 2-55

J
Jacobian 2-58

L

LAR 2-55
least absolute residuals 2-55
least squares fitting
definition 2-49
linear 2-50
nonlinear 2-57
robust 2-55
weighted linear 2-53
Legendre polynomials
example 2-93
generating 2-94
Levenberg-Marquardt algorithm 2-58
leverages 2-56
library models 2-59
linear equations
custom 2-65
fit options 2-67
fitting 2-50
Linear Equations pane
description 2-65
Legendre polynomial example 2-96
robust fit example 2-111
linear interpolation 2-116

linear least squares 2-50
loading the curve-fitting session 1-21
local regression smoothing 2-15

loess 2-

15

lowess 2-15

M

M-file generation 1-21 3-24

MAD

robust fitting 2-56
robust smoothing 2-19
marking outliers 2-28
median absolute deviation
robust fitting 2-56
robust smoothing 2-19
methods
cfit 5-2 to 5-4 5-14 to 5-16 5-20 to 5-21

5-30 5-50 5-53 to 5-54 5-56 5-58 to 5-60
5-65 5-68 to 5-69 5-78

fittype 5-2 to 5-3 5-14 to 5-15 5-20 5-30

models

5-48 5-50 5-53 5-56 5-58 to 5-59 5-68
to 5-69 5-78

custom 2-64

library 2-59
moving average filtering 2-13
multiple correlation coefficient 2-75

N
NaNs

importing 2-3

removing 2-42
nearest neighbor interpolation 2-116
nonlinear equations

custom 2-66

fit options 2-67

fitting 2-57
nonlinear least squares 2-57

Index-5

Index

nonparametric fitting census data example 1-7
example 2-120 fit type definition 2-61
methods 2-116 Legendre 2-94

normal distribution 2-48 piecewise 2-118

normal equations 2-50 rational models 2-62

normalization 1-11 power series

numargs 5-58 fit type definition 2-62

numcoeffs 5-59 prediction bounds

numerically viewing data 2-8 definition 2-77

goodness of fit example 2-83

o predictor data

census data example 1-6
importing 2-3
sectioning 2-28

viewing numerically 2-9

objects
cfit 5-2 to 5-4 5-14 to 5-16 5-20 to 5-21
5-30 5-50 5-53 to 5-54 5-56 5-58 to 5-60

5-65 5-68 to 5-69 5-78 predint 3-22 5-65
fittype 5-2 to 5-3 5-14 to 5-15 5-20 5-30 preprocessing data 2-42
5-48 5-50 5-53 5-56 5-58 to 5-59 5-68

excluding and sectioning 2-26
smoothing 2-9
outliers transforming the response data 2-41
definition 2-26 Preview window 2-5
marking 2-28 probnames 5-68
removing 2-42 probvalues 5-69

robust fit 2-55 projection matrix 2-53
overdetermined system of equations 2-50

overfitting

to 5-69 5-78

census data example 1-16 Q
goodness of fit evaluation 2-86 QR decomposition 2-52
quality of data
P definition 2-48

weighted linear least squares 2-53
parametric fitting 2-46

pchip 2-118
piecewise polynomials 2-118 R
plot 3-16 3-22 5-60 R-square 2-75
Plotting GUI adjusted 2-76
census data example 1-20 negative values 2-76
description 5-11 rationals
smoothing data example 2-25 example 2-87
polynomials fit type definition 2-62

Index-6

Index

regression
sum of squares 2-75
weights
least squares 2-53
smoothing 2-15
removing Infs, NaNs, and outliers 2-42
renaming
data sets 2-4
exclusion rules 2-27
residual degrees of freedom 2-76
residuals
adjusted 2-55
comparing multiple fits 1-11
definition 2-72
displaying
census data example 1-10
goodness of fit evaluation 2-72
excluding data with 2-34
response data
census data example 1-6
error distribution 2-48
importing 2-3
sectioning 2-28
transforming 2-41
viewing numerically 2-9
right-click menu 2-7
RMSE 2-77
robust
fitting
alternative to excluding data 2-30
example 2-109
regression schemes 2-55
smoothing 2-19
robust least squares 2-55
robust weights
fitting 2-56
smoothing 2-19
Rodrigues’ formula 2-94
root mean squared error 2-77
rubber band selection 2-34

S

saving
analysis results
workspace variables 1-19
fit results
curve fitting session 1-20
M-file 1-21 3-24
workspace variables 1-16
Savitzky-Golay filtering 2-20
scatter plot 2-6
scatter plot smooth 2-15
sectioning data
definition 2-26
example 2-33
periodic data example 2-36
rules 2-31
session 1-20
set 5-70
shape-preserving interpolation 2-116
sine functions 2-63
smooth 3-10 to 3-11 5-72
Smooth pane
description 2-11
example 2-23
smoothing data
definition 2-9
example 2-22
local regression 2-15
moving average filtering 2-13
robust procedure 2-19
Savitzky-Golay filtering 2-20
smoothing spline 2-119
span 2-10
spline 2-118
cubic interpolant 2-116
smoothing 2-119
SSE, SSR, SST 2-75
standard error 2-77
starting values
Fit Options GUI 2-67

Index-7

Index

Gaussian example 2-108 \"4
structure of coefficients 2-121 variances 2-54
sum of sine functions viewing data

fit type definition 2-63 graphically 2-6
sum of squares 2-49 numerically 2-8

error 2-75

regression 2-75

total 2-75 w

Weibull distribution
I fit type definition 2-63
weighted linear least squares 2-53

Table of Fits 1-7 weights 2-54
Table Options GUI regression

census data example 1-14 least squares 2-53

goodness of fit evaluation 2-85 smoothing 2-15
Tools menu 2-7 robust
total sum of squares 2-75 least squares 2-55
transforming the response data 2-41 smoothing 2-19
tricube weights 2-15 viewing numerically 2-9
trust-region algorithm 2-58
type 5-78

Index-8

	toc
	Getting Started
	What Is the Curve Fitting Toolbox?
	Major Features
	Interactive and Programmatic Environments

	Interactive Curve Fitting
	Opening the Curve Fitting Tool
	Importing the Data
	Interactive Fitting
	The Data Fitting Procedure
	Determining the Best Fit
	Saving the Fit Results

	Analyzing the Fit
	Saving the Analysis Results

	Saving Your Work
	Save the Session
	Generate an M-File

	Programmatic Curve Fitting
	Curve Fitting Objects and Methods
	Interactive Code Generation

	Interactive Curve Fitting
	Importing, Viewing, and Preprocessing Data
	Importing Data
	Construct and Name the Data Set
	Data Sets List
	Example: Importing Data

	Viewing Data
	Viewing Data Graphically
	Viewing Data Numerically

	Smoothing Data
	Data Sets
	Smoothing Method and Parameters
	Data Sets List
	Moving Average Filtering
	Lowess and Loess: Local Regression Smoothing
	Savitzky-Golay Filtering
	Example: Smoothing Data

	Excluding and Sectioning Data
	Exclusion Rule
	Exclude Individual Data Points
	Exclude Data Sections in the Domain or Range
	Marking Outliers
	Sectioning
	Example: Excluding and Sectioning Data
	Example: Sectioning Periodic Data

	Additional Preprocessing Steps
	Transforming Response Data
	Removing Infs, NaNs, and Outliers

	Selected Bibliography

	Fitting Data
	The Fitting Process
	Parametric Fitting
	Basic Assumptions About the Error
	The Least Squares Fitting Method
	Library Models
	Custom Models
	Specifying Fit Options
	Evaluating the Goodness of Fit
	Sum of Squares Due to Error
	R-Square
	Degrees of Freedom Adjusted R-Square
	Root Mean Squared Error
	Calculating and Displaying Confidence Bounds
	Calculating and Displaying Prediction Bounds

	Example: Rational Fit
	Fitting Custom Models
	Example: Robust Fitting

	Nonparametric Fitting
	Interpolants
	Smoothing Spline
	Example: Nonparametric Fitting

	Selected Bibliography

	Programmatic Curve Fitting
	Curve Fitting Objects and Methods
	Overview
	Curve Fitting Objects
	Curve Fitting Methods
	Workflow for Object-Oriented Fitting
	Examples
	Example: Smoothing Data I
	Example: Smoothing Data II
	Example: Excluding Data
	Example: Specifying Fit Options
	Example: Robust Fitting
	Example: Differentiating and Integrating a Fit
	Example: Prediction Intervals

	Interactive Code Generation
	Overview
	The Generated M-file
	Running the Generated M-file
	Understanding the Components of the Generated M-File
	Modifying the Code

	Functions — By Category
	Preprocessing Data
	Fitting Data
	Curve Fit Methods
	Fit Type Methods
	Postprocessing Fits
	Information and Help

	Functions — Alphabetical List
	Index

	tables
	Default Starting Points and Constraints
	Types of Confidence and Prediction Bounds
	Types of Prediction Bounds
	Legendre Polynomials up to Fourth Degree
	Expected Buchanan Votes in Palm Beach County
	Interpolant Methods

